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ABSTRACT:	Polysubstituted	arenes	are	ubiquitous	structures	
in	a	myriad	of	medicinal	agents	and	complex	molecules.	Herein,	
we	report	a	new	catalytic	blueprint	that	merges	the	modularity	
of	nickel	catalysis	for	bond-formation	with	the	ability	to	enable	
a	rather	elusive	1,4-hydride	shift	at	arene	sp2	C–H	sites,	 thus	
allowing	 to	 access	 ipso/ortho	 difunctionalized	 arenes	 from	
readily	available	aryl	halides	under	mild	conditions	and	exquis-
ite	selectivity	profile.	

Polysubstituted	arenes	are	commonly	encountered	in	phar-
maceuticals,	functional	materials	and	agrochemicals.1	Conven-
tional	routes	for	their	synthesis	include	nucleophilic	aromatic	
substitution	of	biased,	electron-poor	arenes	or	cross-coupling	
reactions	 of	 aryl	 (pseudo)halides	 that	 results	 in	 bond-for-
mation	at	 the	 ipso	 position	via	 formal	group	 interconversion	
(Figure	1,	path	a).2	Over	the	past	two	decades,	the	Pd-catalyzed	
Catellani-type	 reaction	has	expanded	 the	 toolbox	of	our	 syn-
thetic	arsenal3	when	utilizing	aryl	halide	counterparts,	offering	
a	complementary	selectivity	profile	that	allows	to	incorporate	
functional	 groups	at	both	 ipso	and	ortho	 positions	 (Figure	1,	
path	 b).	 However,	 these	 reactions	 require	 non-negligible	
amounts	of	norbornene	and	mainly	restricted	to	ortho-substi-
tuted	haloarenes	to	avoid	the	formation	of	di-ortho-functional-
ized	byproducts,3f	thus	limiting	the	application	profile	of	these	
rather	appealing	endeavors.	Consequently,	chemists	have	been	
challenged	 to	 design	 new	 catalytic	 technologies	 that	 might	
streamline	 the	 formation	 of	 polysubstituted	 arenes	with	 im-
proved	modularity,	generality	and	complementary	selectivity	
profile	beyond	the	realm	of	noble	metal	catalysis.4	

	
Figure	1.	State-of-the-art	cross-coupling	of	aryl	halides.	

In	 recent	 years,	 nickel	 catalysis	has	offered	new	vistas	 for	
forging	 C–C	 and	 C–heteroatom	 bonds,	 enabling	 transfor-
mations	 that	 are	 otherwise	difficult	 to	 reach	 for	 other	metal	
catalysts	in	the	d10	series.5	Among	these,	particularly	attractive	
is	the	ability	to	promote	a	formal	translocation	of	the	nickel	cat-
alyst	throughout	the	alkyl	side	chain	via	a	series	of	formal	1,2-
hydride	 shifts,	 thus	 establishing	 a	 rationale	 to	 functionalize	
previously	unfunctionalized	 sp3	C–H	 reaction	 sites	 (Figure	2,	
top	left).6,7	In	contrast,	the	ability	to	promote	a	nickel	migration	
at	arene	sp2	C–H	sites	has	received	much	 less	attention,	with	
remarkable	exceptions	such	as	an	elegant	work	by	Johnson	us-
ing	aryne	complexes,8a	 thus	constituting	a	desirable	scenario	
for	chemical	invention	(top	right).8-14	In	line	with	this	notion,	
our	group	has	recently	described	the	ability	of	nickel	catalysts	
to	enable	a	1,4-metal	shift	along	a	sp2	backbone	as	a	vehicle	to	
promote	a	formal	reductive	sp2	C–H	carboxylation	with	CO2	as	
coupling	partner,15	thus	suggesting	that	the	implementation	of	
de	novo	cross-electrophile	reactions16	via	1,4-Ni	shift	with	elec-
trophiles	other	than	CO2	might	not	be	a	chimera.	Challenged	by	
this	perception,	we	recently	questioned	whether	we	could	de-
sign	a	reversible	1,4-Ni	migration	as	a	new	catalytic	blueprint	
to	 promote	 multicomponent	 cross-electrophile	 couplings	 en	
route	 to	 densely	 functionalized	 polyfunctionalized	 arenes.	
Herein,	we	report	the	successful	realization	of	this	goal,	culmi-
nating	 in	 the	 development	 of	 a	 tandem	 nickel-catalyzed	
ipso/ortho	 difunctionalization	 of	 readily	 available	 aryl	 bro-
mides	 with	 unactivated	 alkyl	 halides	 and	 alkyne	 congeners	
(Figure	2,	bottom).	The	protocol	is	distinguished	by	its	simplic-
ity	and	broad	substrate	scope	–	including	challenging	substrate	
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combinations	 –,	 offering	 a	 complementary	 new	 platform	 for	
preparing	 polyfunctionalized	 arenes	 from	 simple	 precursors	
with	exquisite	control	of	 the	selectivity	profile	at	both	sp2	C–
halide	and	sp2	C–H	sites.	

	
Figure	2.	Ni-catalyzed	migratory	cross-coupling	reactions.	

The	design	principle	of	our	Ni-catalyzed	 ipso/ortho	difunc-
tionalization	 is	 outlined	 in	 Figure	 3.	We	hypothesized	 that	 a	
suitable	LnNi(0)	catalyst	might	trigger	an	oxidative	addition	at	
the	sp2	C–Br	site	followed	by	a	syn-migratory	insertion	into	an	
alkyne,	thus	generating	an	alkenylnickel(II)	species	(III).	This	
intermediate	(III)	could	undergo	reversible	E/Z	isomerization	
to	generate	a	mixture	of	E/Z	isomers	(III	and	III').	Subsequently,	
reversible	1,4-Ni	migration	might	translocate	the	metal	center	
at	the	arene	backbone	(IV),	 thus	setting	the	stage	for	a	rapid	
recombination	 with	 an	 open-shell	 intermediate	 generated	
upon	single-electron	transfer	(SET)	to	an	alkyl	halide	(V).	Re-
ductive	elimination	of	VI	would	 then	deliver	 the	 targeted	di-
functionalized	 framework	 (4)	 and	 a	 Ni(I)	 intermediate	 (VII)	
that	would	ultimately	recover	the	propagating	LnNi(0)	species	
upon	SET	with	an	alkyl	halide	(3)	and	Mn	as	terminal	reductant.	

	
Figure	3.	Proposed	Mechanistic	Pathway.	

Our	investigations	began	by	studying	the	reaction	of	methyl	
4-bromobenzoate	 (1a)	with	1-phenyl-1-propyne	 (2a)	and	1-

bromo-4-methoxybutane	 (3a).	 After	 some	 experimentation,	
we	found	that	a	combination	of	NiCl2∙glyme,	L1,	Mn	as	reduct-
ant	in	DMA	at	rt	delivered	4a	in	74%	isolated	yield	with	excel-
lent	E/Z	ratio	(96:4)	and	regioselectivity	pattern	(96:4)	(Table	
1,	entry	1).17	In	line	with	our	expectations,	the	nature	of	the	lig-
and	backbone	was	critical	for	success,	with	ligands	possessing	
a	single	substituent	at	C6	on	the	2,2'-bipyridine	core	providing	
the	best	results.18	Specifically,	similar	yields	were	found	for	L2	
or	L3	 (entries	2	 and	3)	whereas	not	 even	 traces	 of	4a	were	
found	in	the	crude	mixtures	when	utilizing	a	Ni/L4	or	Ni/L5	
regime	instead	(entries	4	and	5),	thus	showing	the	subtleties	of	
our	ligand	motif.	Interestingly,	a	deleterious	effect	on	reactivity	
was	found	when	employing	Zn	as	reductant	or	in	the	absence	
of	either	NaI	or	4Å	MS	(entries	5–7).	As	illustrated	in	entries	8–
11,	 iodide	 additives,	 nickel	 catalysts	 and	 solvents	 other	 than	
NaI,	 NiCl2·glyme	 and	 DMA	 did	 not	 improve	 further	 the	 re-
sults.19	Unfortunately,	the	utilization	of	methyl	4-chlorobenzo-
ate	(1a-Cl)	as	substrate	failed	to	provide	the	targeted	4a	(entry	
12).	

Table	1.	Optimization	of	the	Reaction	Conditions	

 
a1a	(0.20	mmol),	2a	(0.30	mmol),	3a	(0.40	mmol),	NiCl2·glyme	
(5	mol%),	L1	(10	mol%),	Mn	(0.60	mmol),	NaI	(0.40	mmol),	4Å	
molecular	sieves	(40	mg),	DMA	(0.20	M)	at	rt	for	24	h.	Yields	
were	determined	by	GC	using	n-dodecane	as	internal	standard.	
bThe	ratio	of	(E)-4a/(Z)-4a,	determined	by	GC	and	compared	
with	standard	E/Z	isomers	of	4a,	see	SI	for	details.	crr,	regioiso-
meric	 ratio,	 representing	 the	 ratio	 of	4a	with	 the	 sum	of	 all	
other	 observed	 ipso-coupling	 isomers,	 as	 determined	 by	 GC	
and	GC-MS	analysis	and	compared	with	standard	ipso-coupling	
isomers,	see	SI	for	details.	cIsolated	yield,	average	of	two	inde-
pendent	runs.	

With	these	results	in	hand,	we	next	turned	our	attention	to	
exploring	the	preparative	scope	of	our	ipso/ortho-functionali-
zation	of	aryl	bromides	via	1,4-nickel	shift.	As	evident	from	the	
results	compiled	in	Table	2A,	our	protocol	was	found	to	be	ap-
plicable	across	a	wide	number	of	aryl	bromides,	alkyl	bromides	
and	 alkyne	 counterparts.	 In	 addition,	 good	 yields	 were	
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obtained	regardless	of	whether	electron-poor	or	electron-rich	
bromoarenes	 were	 utilized	 as	 coupling	 partners.	 In	 general,	
migration	occurs	to	the	less-sterically	hindered	ortho-position	
(4r–4w).	A	wide	variety	of	functional	groups	such	as	esters	(4a,	
4o,	4t),	amides	(4i,	4q),	sulfonamides	(4b),	phosphonates	(4k),	
amines	(4p),	nitriles	(4r),	sulfones	(4u)	or	ketones	(4v)	were	
perfectly	 accommodated.	 Moreover,	 the	 presence	 of	 groups	
amenable	for	Ni-catalyzed	reactions	such	as	aryl	fluorides	(4e,	
4m),	aryl	chlorides	(4f),	aryl	triflates	(4g)	or	aryl	tosylates	(4h)	
did	not	interfere	with	productive	formation	of	the	difunction-
alized	arene,	thus	leaving	ample	room	for	further	functionali-
zation	via	conventional	cross-coupling	protocols.5	As	shown	in	
Table	2B,	our	platform	could	be	applied	for	a	wide	number	of	
alkynes	 end-capped	 with	 either	 aromatic	 or	 aliphatic	 back-
bone.	 It	 is	worth	noting,	 however,	 that	 alkynes	bearing	elec-
tron-donating	arene	substituents	resulted	in	better	regioselec-
tivity	profiles	(5a–5c	vs	5d,	5f).	 Importantly,	X-ray	crystallo-
graphic	analysis	of	5a	univocally	revealed	the	structure	of	the	
difunctionalized	arene	with	an	E-configured	olefin.	Notably,	al-
kynes	 bearing	 ortho-substituted	 arenes	 (5e),	 or	 heterocyclic	
motifs	(5g,	5h)	posed	no	problems.	Interestingly,	the	reaction	
could	 be	 extended	 to	 either	 symmetrical	 diarylated	 or	

dialkylated	alkynes,20	invariably	obtaining	5j–5l	in	good	yields	
and	regioselectivities.	Unsymmetrically	substituted	dialkyl	al-
kynes	led	to	regioisomeric	mixtures	due	to	the	difficulty	of	con-
trolling	migratory	insertion	of	arylnickel(II)	species	into	alkyne	
(5m/5m'	and	5n/5n').	Similarly,	our	reaction	was	equally	ap-
plicable	across	a	number	of	differently	substituted	unactivated	
alkyl	bromides	(Table	2C).	Indeed,	similar	results	were	found	
for	both	primary	(6a–6j)	and	secondary	alkyl	bromides	(6k–
6m);	note,	however,	that	a	slight	erosion	in	regioselectivity	was	
observed	 for	 the	 latter.	 The	 chemoselectivity	 of	 the	 reaction	
was	further	illustrated	by	the	compatibility	with	esters	(6c,	6d,	
6n–6s),	phosphonates	(6e),	carbamates	(6f,	6m),	amides	(6g,	
6p),	acetals	(6h),	nitriles	(6j),	sulfonamides	(6o),	ketones	(6q,	
6r)	or	sulfones	(6p),	among	others.	The	prospective	potential	
of	our	methodology	was	 further	 illustrated	by	 the	 successful	
preparation	 of	 6n–6s,	 thus	 showing	 the	 suitability	 of	 our	
method	to	be	applied	in	advanced	intermediates	derived	from	
Oxaprozin	 (6n),	 Probenecid	 (6o),	 Sulbactam	 (6p),	 Isoxepac	
(6q),	Estrone	(6r)	and	δ-Tocopherol	(6s).	
	

Table	2.	Scope	of	Ni-Catalyzed	Three-Component	Migratory	C(sp2)–H	Alkylation	of	Aryl	Bromidesa	



 

 
aAs	Table	1	(entry	1).	Isolated	yields,	average	of	two	independent	runs;	E/Z	corresponds	to	the	E/Z	isomeric	ratio,	rr	corresponds	to	
the	regioisomeric	ratio,	representing	the	ratio	of	the	depicted	product	with	the	sum	of	all	other	observed	ipso-isomers,	as	determined	
by	GC,	GC-MS	analysis	and	1H	NMR	of	the	crude	mixture,	see	SI	for	details.	bNiBr2·diglyme	(5	mol%),	L3	(10	mol%),	Mn	(2.0	equiv),	
NaI	(1.0	equiv),	MgCl2	(50	mol%),	NMP	(0.20	M),	rt,	48	h.	

The	synthetic	utility	of	our	protocol	is	further	highlighted	in	
Figure	4.	As	shown,	the	pending	alkenyl	group	could	be	utilized	
as	a	handle	for	subsequent	manipulation;	specifically,	Ru-cata-
lyzed	oxidative	cleavage	enabled	the	synthesis	of	7a	whereas	a	
Pd-catalyzed	 hydrogenation	 resulted	 in	 7b,	 thus	 indirectly	
serving	as	a	manifold	to	 incorporate	two	sp2–sp3	 linkages	via	
formal	vicinal	difunctionalization	of	a	simple	and	commercially	
available	aryl	halide.	

	
Figure	4.	Synthetic	utility.	Synthesis	of	7a:	RuCl3	(3.5	mol%),	
oxone	(2.0	equiv),	NaHCO3	(6.2	equiv),	MeCN:H2O	(1.5:1,	0.04	
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M),	rt,	2	h;	Synthesis	of	7b:	Pd(OH)2/C	(10	mol%),	H2	(1	bar),	
EtOH	(0.20	M),	rt,	12	h.	

Next,	we	turned	our	attention	to	gaining	some	insight	 into	
the	 1,4-Ni	 migration	 event	 via	 isotope-labelling	 (Scheme	 1).	
Specifically,	 exclusive	 deuterium	 incorporation	was	 found	 at	
the	alkenyl	site	upon	reaction	of	1j-d5	with	3a	and	2b	under	
our	optimized	reaction	conditions	(Scheme	1,	top),	thus	indi-
rectly	confirming	that	1,4-shift	occurs	prior	to	alkylation	at	the	
sp2	C–H	site.	Interestingly,	no	significant	intermolecular	kinetic	
isotope	effect	was	observed	by	comparing	the	initial	rates	of	1j	
and	1j-d5.	This	is	in	contrast	with	our	recently	developed	car-
boxylation	 event,15	 tacitly	 suggesting	 that	 1,4-Ni	 migration	
might	not	be	involved	in	the	rate-limiting	step	of	the	reaction.21	
According	to	the	rationale	depicted	in	Figure	3,	the	targeted	al-
kylation	could	also	be	initiated	upon	oxidative	addition	of	an	
alkenyl	bromide	to	Ni(0)Ln	en	route	to	III.	This	notion	gained	
credence	 by	 observing	 the	 formation	 of	 4d	 regardless	 of	
whether	 (Z)-8a	 or	 (E)-8a	 were	 utilized	 as	 counterparts	
(Scheme	1,	middle).	This	result	is	particularly	noteworthy,	as	it	
suggests	 a	 fast	 and	 reversible	 E/Z-isomerization	 of	
alkenylnickel(II)	species	prior	to	1,4-Ni	migration.22	While	un-
ravelling	the	mechanistic	underpinnings	of	our	protocol	should	
await	further	investigations,	it	is	worth	noting	that	exposure	of	
1a	with	2a	and	3a	 to	stoichiometric	amounts	of	Ni/L1	deliv-
ered	4a,	albeit	in	12%	yield	(Scheme	1,	bottom).	Although	care	
should	be	taken	when	generalizing	these	results,23	at	present	
we	support	a	mechanistic	scenario	consisting	of	a	1,4-shift	trig-
gered	by	in	situ	generated	alkenyl	nickel(II)	 intermediates	of	
type	III	(Figure	3).	
Scheme	1.	Preliminary	Mechanistic	Studies.	

	
In	 summary,	 we	 have	 developed	 a	 de	 novo	 platform	 that	

streamlines	the	preparation	of	vicinal	difunctionalized	arenes	
from	simple	aryl	halides	by	harnessing	the	potential	of	Ni	cata-
lysts	to	trigger	unconventional	1,4-shifts	at	previously	unfunc-
tionalized	sp2	C–H	linkages.	This	method	is	characterized	by	its	
broad	substrate	scope	and	mild	conditions,	offering	a	comple-
mentary	technique	to	enable	formal	cross-electrophile	regimes	
at	non-polarized	sp2	C–H	sites.	The	development	of	a	catalytic	
asymmetric	version	of	this	transformation	with	secondary	al-
kyl	bromides	is	currently	underway.	
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