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Data-driven models for ground and excited states for
Single Atoms on Ceria
Julian Geiger1,2, Albert Sabadell-Rendón1,2, Nathan Daelman 1 and Núria López 1✉

Ceria-based single-atom catalysts present complex electronic structures due to the dynamic electron transfer between the metal
atoms and the semiconductor oxide support. Understanding these materials implies retrieving all states in these electronic
ensembles, which can be limiting if done via density functional theory. Here, we propose a data-driven approach to obtain a
parsimonious model identifying the appearance of dynamic charge transfer for the single atoms (SAs). We first constructed a
database of (701) electronic configurations for the group 9–11 metals on CeO2(100). Feature Selection based on predictive Elastic
Net and Random Forest models highlights eight fundamental variables: atomic number, ionization potential, size, and metal
coordination, metal–oxygen bond strengths, surface strain, and Coulomb interactions. With these variables a Bayesian algorithm
yields an expression for the adsorption energies of SAs in ground and low-lying excited states. Our work paves the way towards
understanding electronic structure complexity in metal/oxide interfaces.
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INTRODUCTION
Single-atom catalysts (SACs) are a promising class of materials that
provide the ultimate miniaturization of the active site1–5. They
present the best utilization of expensive metal atoms, given they
can be prepared in high concentrations and defined speciation6,7.
Various supports have been used to fabricate stable SACs,
including other metals, (doped) carbons, metal-organic frame-
works, and most commonly oxides, for which the definition was
coined1,3,8. Stabilization of single atoms (SAs) on oxides is often
attributed to a strong metal-support interaction (SMSI), in which
electron density is donated from the metal to the support, thus
making reducible oxides particularly suitable host materials3,9.
However, the reverse electron transfer (from the oxide to metal
nanoparticles) is also possible10. Dispersing metals up to single
atoms is very efficient in oxygen-rich environments of Fe3O4 and
ceria, and stable SAs of rhodium, palladium, platinum and
gold8,11–14 have been characterized.
Owed to their isolated nature, SAs exhibit unusual electronic

properties. For instance, in an AgCu single-atom alloy catalyst,
free-atom like states of copper were reported15, while strong
electronic coupling in a Pd1/Fe2O3 SAC resulted in improved
alkyne semi-hydrogenation performance16. Moreover, the oxida-
tion state of the isolated platinum atom in Pt1/CeO2 dynamically
changes due to the electronic coupling of the metal and ceria
support17. For ceria, this process results in localized Ce3+ centers
(polarons). The electron transfer process is assisted by lattice
phonons and was therefore coined as phonon-assisted metal-
support interaction (PAMSI)17. A Born–Haber model was devised
to understand the origin of the dynamic behavior of the Pt1/CeO2

system that retrieved the energy difference between the adsorbed
Pt in its neutral and charged state with concomitant reduction of
the oxide. To compensate for the ionization potential of the metal
atom, as well as the reduction and distortion of the oxide, covalent
Pt–O interactions contribute, and large favorable changes in
Coulomb interactions tip the balance.

The dynamic nature of the metal oxidation state (mOS) in Pt1/
CeO2 challenges the classical assignment of a static charge to
SACs9, thus limiting the applicability of traditional structure-
activity relationships. Consequently, Pt1/CeO2 needs to be
represented as an electronic ensemble with similar geometric
structures, but significantly different electron density distribu-
tions. Highly active metastable states, which are easily populated
under operando conditions, can considerably influence material
properties and catalytic reactivities, as has been shown for
geometric ensembles18. The dynamic effect significantly increases
structural and electronic complexity, thus requiring sophisticated
multiscale modeling approaches19. Similarly, assessing the
properties of multiple low-lying electronic states is a non-trivial
task. As seen for Pt, these states are closely spaced within the
energy spectrum, and the number of possible distributions grows
rapidly with the number of electrons exchanged by the isolated
metal and the oxide.
Thus, the prediction of dynamic behavior is challenging and we

lack a model that provides a physical expression for the
interaction between the SAs and the reducible oxide support.
Machine-learning (ML) techniques applied to materials modeling
hold promise to overcome these hurdles20–22. Data-driven models
based on readily available physical properties have proven to
simplify the analysis of complex configurational spaces. For
instance, a Gaussian Process Regression model was used to
augment first-principles estimates of the reduction temperatures
of 38 metal oxides23. ML methods further predicted adsorption
energies of SACs on various oxides24, shed light on the influence
of surface modifications on MgO(100) supports25, and identified
aggregation trends compromising SA stability26. A Least Absolute
Shrinkage and Selection Operator (LASSO) model was used to
single out the 75 most representative descriptors out of 300k
candidates governing the adsorption of transition metals (TMs)
on oxide supports27. Many of these exploratory efforts have
resulted in robust models, but require large feature spaces and
offer limited explainability.
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In this work, we employed a data-driven approach to augment
the simple representation of a physics-based two-state
Born–Haber model, constructed for Pt1/CeO2

17. To this end, we
have created an extensive database of (701) ground and low-
lying excited states for CeO2(100)-based SACs of the group 9–11
metals, accounting for their rich and varied redox chemistry,
adapting up to five distinct metal charge states, as well as
alternative coordination environments of the ceria support. We
applied a toolbox of ML techniques to reproduce the energies of
ground and excited states for all SACs. Predominant features
were then used to construct a parsimonious, interpretable model
that predicts the appearance of dynamic electron transfer and
rationalizes main contributions.

RESULTS AND DISCUSSION
Metal adsorption on CeO2 surfaces
To analyze the stability of single metal atoms on the low-energy
facets of ceria (see Supplementary Fig. 1 and Supplementary Note
1), we evaluated their adsorption energies by means of DFT
(PBE+U) via: EAds= Etotal− Esurface− Ebulk metal, where Etotal denotes
the energy of the SAC, Esurface that of the unreconstructed oxide
surface and Ebulk metal the metal cohesive energy per atom
(Supplementary Tables 1 and 2). Exothermic (endothermic) adsorp-
tion indicates favorable dispersion in the form of single atoms
(nanoparticles). On the lowest energy facet (111), as well as on
(110), adsorption is always endothermic with respect to the bulk
metal, the only exceptions being cobalt and nickel on (110).
In contrast, adsorption on unreconstructed (2O) CeO2(100) is

exothermic for cobalt, nickel, copper, silver and gold. Moreover,
lattice oxygen atoms in CeO2(100) easily diffuse and rearrange to
form oxygen-rich domains28. These modified coordination envir-
onments involve three or four surface oxygen atoms, denoted 3O
and 4O, respectively. 3O-sites stabilize the first-row TMs cobalt,
nickel and copper, while adsorption on square-planar (100)-4O is
exothermic for all metals (except for Au and Ag), rendering them
as stable SACs. These coordination motifs are very common on

ceria as they appear at CeO2(111) step edges29 and the corners of
cuboctahedral ceria nanoparticles30, agreeing with experimental
observations29,31. Upon adsorption, electrons from the deposited
metal atoms can be transferred to the ceria support and localize
at Ce4+ centers, forming Ce3+ polarons. Thus, counting reduced
cerium centers can be used as a proxy for the metal oxidation
state, mOS30, avoiding difficulties in charge assignment32.
Particularly, for Pt1/CeO2(100) dynamic electron exchange
between the metal atom and the support was found at around
500 K according to our previous ab initio Born-Oppenheimer
Molecular Dynamics (BOMD)17.

Dynamic behavior of M1/CeO2(100) SACs
To assess if the dynamic charge transfer is common to other metals,
we performed 10 ps BOMD simulations of the stable CeO2(100)-4O
SACs at 600 K for cobalt, rhodium, iridium and copper (Supple-
mentary Note 2). Figure 1 shows the continuous mOS progressions
and frequency distributions during the BOMD trajectories for each
system. Interestingly, the very redox active metal iridium remains in
a charge state of 4+ throughout, with 3+ states persisting for less
than 30 fs and charge transfer events being limited to the oxide (i.e.,
polaron hopping; see Supplementary Fig. 2). On the other hand,
copper presents a 2+ ground state and forms two long-lived (about
200 fs) Cu+ species, while cobalt fluctuates between mOS values of
2+ and 4+, transitioning through the 3+ ground state. Co2+ states
are short-lived ( < 10 fs) and precede transitions to 4+ states, which
are stable for up to 70 fs. Rhodium shows the most dynamic
behavior and adapts mOS values ranging from 1+ to 4+. The
longest lifetime of this system in its 3+ ground state is below 600 fs,
while 2+ (4+) states last up to 200 fs (150 fs), and also short-lived
(<50 fs) 1+ states are accessible. Overall, for copper, cobalt and
rhodium, we identify ~7, 27, and 65 states at varying mOS that
persist for more than 30 fs, respectively.
Thus, the BOMD trajectories show that all SACs except Ir1/CeO2

present a dynamic mOS, albeit to varying extents. It is therefore
challenging to predict mOS dynamics ad-hoc, since a poor redox

Fig. 1 Molecular Dynamics of selected CeO2(100)-4O-based SACs investigated for metal oxidation state (mOS) dynamics at typical
working temperature (600 K). The left panels show top views of the initial, unoptimized SAC structures, with ground state Ce3+ distributions
indicated. colour code: O2−, red; Ce4+, orange; Ce3+, yellow (metal species annotated; one subsurface polaron for Co-4O). The center panels
depict the continuous mOS progressions during the 10 ps trajectories, indicated via the white lines and background colour gradients, where
brighter (darker) colour corresponds to higher (lower) mOS values. Distributions of states at mOS increments of 0.1 are shown in the right
panels. The full trajectories of the BOMD simulations can be seen in the Supplementary Videos 1–4.
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active metal such as copper does present the effect, while a highly
multivalent metal like iridium does not. However, an extended
investigation with BOMD for other metals, coordination environ-
ments and longer timescales necessary to ascertain ground states
and dynamicity is computationally not possible.

Sampling of SAC electronic ensembles
Alternatively, the dynamic properties of CeO2(100)-based SACs at
typical working temperatures can be inferred from a static
investigation of ground and excited states17. Thus, we performed
a systematic exploration of electronic ensembles for the group
9–11 transition metals (M= cobalt, rhodium, iridium, nickel,
palladium, platinum, copper, silver, gold), surface oxygen coordi-
nations (NO), metal oxidation states (mOS), and Ce3+ distributions
resulting from electron transfer to the different cerium centers in
the surface. By considering all possible Ce3+ configurations up to
an mOS of 2+, we have created 1242 initial structures, see
Supplementary Note 3, that converged to a dataset of 701 distinct
optimized geometries, as presented in Fig. 2.
We find that each metal can be stabilized by at least one

oxygen coordination environment on the CeO2(100) surface.
However, there is great variability throughout the set: while for
the group 9 and 10 metals, square-planar 4O coordination
presents the ground, 2O an intermediate and 3O a metastable
state, for group 11, adsorption energies become more endother-
mic with increasing valency of the metal atom. Moreover, the
ground state mOS largely depends on the coordination number,

where, higher valency generally leads to more highly charged
metal species. In numerous cases, SACs at a given coordination
and charge state show the presence of low-lying excited states
that cover energy ranges up to 1 eV in magnitude, see
Supplementary Table 3. Thus, the electronic ensembles for
different mOS frequently overlap, indicative of dynamic behavior
at finite temperatures. The ground states deduced from the static
sampling reproduce the majority species observed in the BOMD
simulations (Fig. 1), and the frequencies and lifetimes of dynamic
mOS deviations closely follow the energy distributions of the
ensembles. For instance, in addition to its 3+ ground state, Co1/
CeO2(100)-4O mainly occupies 4+ states, as expected from the
small energy difference between the two ensembles, see Fig. 2.
Similarly, the static mOS behavior of Ir1/CeO2(100)-4O relates to
the lack of accessible states with a charge other than 4+.

Feature space construction
To investigate the main contributions ruling the dynamic charge
transfer, we built data-driven ML models that reproduce the
adsorption energies of ground and accessible low-lying excited
states of the SACs. Our initial pool of atomic metal descriptors is
based on the set proposed by O’Connor et al.27, containing among
others: the atomic number (Z), the cumulative ionization potential
(IP), electronegativity, (χ), and orbital levels/radii, amounting to a
total of nine features. Following previous ML models for the
prediction of ground state adsorption energies of SAs on oxide
supports24,27,33, we added thermodynamic data for metal–metal

Fig. 2 Adsorption energies for ground and accessible excited states of the investigated CeO2(100)-based transition metal (TM) SACs. The
individual values were obtained via: EAds= Etotal− E2O surface− Ebulk metal. Each TM is represented by one panel. The different coordination
environments (illustrated in the bottom row) are separated horizontally within each panel. Metal oxidation states, mOS, are annotated above/
below the respective energy distributions.
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and metal–oxygen interactions34. Specifically, we evaluated the
bond enthalpies of the metal–metal, ΔGM–M, and metal–oxygen
bonds, ΔGM–O, both for the diatomic molecules and for the bulk
systems, see Supplementary Table 4.
Among the oxide descriptors, studies on oxygen defects on ceria

demonstrate that the geometric properties of local Ce3+ distribu-
tions crucially affect the relative stability of vacancies35. Thus, we
augmented the feature space with topological descriptors of the
oxide: (i) the average number of surface oxygen bound to the Ce3+

centers, denoted ϵ, indicative of surface strain35; and (ii) the
M-Ce3+ and Ce3+-Ce3+ distances, accounting for Coulomb
interactions between these centers. To remove the need for
explicit DFT optimizations, the distances are expressed in units of
primitive cell vectors. Owing to the inhomogeneity of the dataset,
we used statistical measures (i.e., the sum, minimum, mean,
maximum and standard deviation) of the respective distance sets
as ML features, instead of the individual values, see Supplementary
Note 4 and Supplementary Fig. 4.

Predictive ML models
In Fig. 3, we present a summary of the predictive ML models. In all
cases, we employed K-fold cross-validation (KFCV) using a 5-fold
data split and show predictions obtained by the best-performing
model, with mean errors and standard deviations indicated. Linear
regression (LR) with metal-only descriptors led to a convoluted
description, proving that host descriptors are crucial to untangle the

metal clusters, see Supplementary Fig. 5. However, as fully linear
models cannot capture the physics of the metal–oxide interaction,
predictions stay poor (Supplementary Table 5).
In a next step, nonlinearity was introduced via a secondary feature

space of second-order products and ratios of all combinations of
primary descriptors27 (871 in total), making regularization essential
to combat overfitting. Hence, we use the Elastic Net (EN) method36,
as it combines l1-and l2-regularization and therefore achieves
feature subset selection and robust predictions, even in the
presence of correlated variables, see Supplementary Note 5 and
Supplementary Figs. 4 and 6. With the secondary feature space, the
EN model achieves an excellent predictive performance of 0.19 eV
(RMSE) and 0.14 eV (MAE), see Fig. 3a. Complementary, a nonlinear
Random Forest (RF) model, see Supplementary Note 6, provides
similar predictive performance of 0.15 eV (RMSE) and 0.11 eV (MAE)
with the primary feature space, see Fig. 3b. Thus, our models
confirm that nonlinearity is crucial to reproduce the energy
distributions of the electronic ensembles for each SAC, and validate
the suitability of our descriptor pool. However, the large number (86)
of convoluted features retained by EN and the poor interpretability
of RF make it difficult to readily derive physical insight.

Feature space reduction
To identify the most representative descriptors, we then applied
sequential feature selection (SFS), while evaluating model perfor-
mances with KFCV, as well as leave-one-group-out cross-validation

Fig. 3 Predictive ML models constructed from the DFT dataset of adsorption energies (EAds) of ground and excited states of ceria-based
group 9–11 transition metal (TM) SACs. Predictions by the best-performing Elastic Net (EN), Random Forest (RF), and Bayesian Machine
Scientist (BMS) models are shown in the panels a, b, and d, with training (testing) data points indicated as circles (crosses). The gray areas mark
a region with a deviation of up to 0.2 eV. Panel c shows the courses of RMSE values for the EN and RF models during sequential feature
selection (SFS), evaluated via K-fold cross-validation (KFCV; opaque bars) and leave-one-group-out cross-validation (LOGOCV; transparent
bars). The use of secondary features for Elastic Net (see main text) requires a minimum of two descriptors in the reduced primary space. The
actual error values and selected primary features obtained during SFS, panel c, are listed in Supplementary Table 6.
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(LOGOCV), see Supplementary Note 7). Figure 3c) shows the RMSE
values of the Elastic Net and Random Forest models during SFS up
to the inclusion of eight primary features, while the full data is
presented in Supplementary Table 6. The use of Random Forest
with LOGOCV leads to considerable errors throughout, which we
attribute to the poor extrapolation capabilities of the method. On
the other hand, the EN model converges to low errors of around
0.20 eV, irrespective of the applied data partitioning. Predictions by
the Elastic Net model during leave-one-group-out cross-validation
are presented in Supplementary Fig. 8.
Importantly, as feature subsets are expanded during SFS, the

errors of both models quickly converge. Thus, a reduced set of
representative physical descriptors is sufficient to capture the
complex interactions governing metal adsorption energies of
ceria-based SACs. As the actual feature sets obtained from SFS
vary with model choice and validation procedure, see Supple-
mentary Table 6, we instead identified frequently occurring
feature classes that directly map to distinct physical properties
of the systems, see Fig. 4a. These properties, and corresponding
representative features, are (i) the metal species, Z; (ii) its charge
state, IP (cumulative up to mOS); (iii) its size, rcov; (iv) the
coordination environment, NO; (v) the covalent contribution of

the metal–oxygen bonds, ΔGM�O
bulk ; (vi) surface strain and distortion,

ϵ; (vii) Coulomb interactions between the metal and the support,
minðdM�Ce3Þ; and lastly (viii) Coulomb interactions between Ce3+

centers, dCe3-Ce3. Notably, this reduced space of eight representa-
tive features contains all contributions earlier suggested in the
Born–Haber model17, as well as relevant geometric properties of
the ceria support identified by Murgida et al.35.

Search for a closed-form model
Based on the reduced set of representative features, we then
searched for a closed-form model for the metal–oxide interaction
that generalizes the two-state Born–Haber cycle (Fig. 4b), to all
considered metals, coordination environments, oxidation states,
and surface electron distributions. Such a model has the
advantage that mathematical analysis of the obtained functional
form can provide additional physical insight. We employed the
Bayesian Machine Scientist (BMS)37, which samples the space of
possible functional forms that fit the training data (further details
are provided in the Methods Section). During preliminary runs
with all eight features (Supplementary Table 7), BMS only retained
dissimilar, reduced subsets, see Supplementary Note 8. Due to the

Fig. 4 Schematic of the data-driven construction of a closed-form model for the interaction of single metal atoms with the CeO2(100)
support, obtained by the Bayesian Machine Scientist (BMS). a Representative features selected via sequential feature selection (SFS) from
predictive ML models. b Physical Born–Haber model previously used to describe the metal-support interaction of a Pt1/CeO2(100) SAC at fixed
coordination and two charge states (energy terms: Red= Reduction; Cov= Covalent; Dist=Distortion; Coul= Coulomb; Ads= Adsorption).
c Energy contributions given by each individual term of EMBMS . The range of energy contribution due to the support, EOxBMS, is indicated as gray
background. Relevant mOS values for term (iii) are annotated.
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greater energy differences between the metal ensembles,
compared to within the individual distributions, BMS mostly
retained metal features, while oxide variables were discarded.
Therefore, initial models (Supplementary Eqs. 7 to 9) had low
predictive power and were elusive to physical interpretation.
Consequently, we decomposed the adsorption energies, EAds,

into a predominant metal and a separate oxide contribution.
Training the first BMS model with only the five metal features (see
above) gives an approximate positioning of each metal ensemble in
the appropriate region of the energy spectrum, EMBMS. To retrieve the
remaining oxide contributions, approximated by EOxBMS, we then
subtracted EMBMS from the DFT adsorption energies and trained a
second BMS model on the residuals, using the remaining three
host descriptors. Following this approach, we obtained consistent
and interpretable functional forms for both contributions, as
presented in Eqs. (1) to (3). The full, additive model gives accurate
adsorption energy predictions (RMSE= 0.20 eV and MAE= 0.15 eV),
as shown in Fig. 3d. Relevant fitting constants are reported in
Supplementary Table 8.

EAds ¼ EMAds þ EOxAds � EMBMS þ EOxBMS ¼ EBMS: (1)

EMBMS ¼ NOc1 ΔGM�O
bulk þ c2

� �NOcos rcovð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

ðiÞ

þNOc3 þ ΔGM�O
bulk

2
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

ðiiÞ

� NOr2cov IPþ Zð Þ�c2�NO

c4 ΔGM�O
bulk þ c5

� �2
ΔGM�O

bulk � IPþ Zð Þ�c2�NOþc4
� �

rcov þ cos c6rcov
c4

� �� �2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
ðiiiÞ

(2)

EOxBMS ¼
1
c1

dCe3�Ce3 þ
minðdM�Ce3Þ

c22 minðdM�Ce3Þ � c2dCe3�Ce3
cos c1 c1ϵ c1 þ c2ð Þ þ ϵ2

� �� �� �

(3)

Deriving physical insight from the closed-form model
For better interpretability, we evaluated each of the three
constituent terms of EMBMS (Eq. (2), see above), denoted (i), (ii),
and (iii), separately, while their individual energy contributions are
presented in Fig. 4c. Term (i) spans from –1.86 to 0.24 eV and
attributes the greatest stability to highly coordinated (small)
metals that form strong bonds with oxygen. Thus, it accounts for
metal–oxygen bonding in the different coordination environ-
ments, and predicts the following stability trends: NO= 4
(exothermic) > NO= 2 (thermoneutral) > NO= 3 (endothermic), in
agreement with expectations derived from coordination chem-
istry. Thus, term (i) correctly reproduces the dependence of the
adsorption energies on the coordination number for the group 10
metals (Ni, Pd, Pt), Rh, and to some extent, Ir (see Fig. 2). However,
it provides a poor approximation for the group 11 metals (Cu, Ag,
Au), as they do not follow the same energy trends.
Term (ii) is endothermic, spanning from 0.54 to 1.40 eV, and

only depends on ΔGM�O
bulk and NO. Contrary to term (i), it particularly

destabilizes high coordination and strong metal–oxygen bonds,
thus we mainly attribute it to distortion. Term (ii) provides a first
correction to the estimates of term (i), and further distinguishes
the different metals and coordination environments in the energy
spectrum.
Lastly, term (iii) is given by a fraction that involves all five metal

features and spans from –2.00 to 0.00 eV. It therefore introduces a
distinction by the mOS. The contribution of term (iii) is exothermic
for the first-row metals cobalt, nickel, and copper, particularly at
lower coordination NO= 2 and 3. In the limit of large atomic
numbers and covalent radii, that is, for the second and third row
TMs, term (iii) approaches zero, therefore leaving these metals
almost unaffected. Owing to their weak metal–oxygen bond
strength, the effect is somewhat mitigated for silver and gold, for

which term (iii) slightly stabilizes low coordinations. Overall, the
influence of term (iii) is highly dependent on the specific metal
atom and mOS state, thus providing a final refinement of the
estimates given by terms (i) and (ii).
The remaining oxide contributions, approximated by EOxBMS and

illustrated as gray background in Fig. 4c, are mainly attributed to
Coulomb interactions (within the support, and between the metal
and Ce3+ centers), as well as lattice strain induced by the oxygen-
rearrangements and surface polarons. EOxBMS particularly penalizes
configurations with increased lattice strain, which span from –0.15
to 0.33 eV, and are therefore of the same magnitude as polaron
hopping barriers in ceria (0.40 eV)38, or the reconstruction energy
from 2O to 3O (0.30 eV, see Supplementary Note 1).
The investigated ML models (EN, RF, and BMS) all provide

similar predictive accuracy. However, as outlined above, the closed
functional expression obtained with BMS is physically interpre-
table. Supplementary Fig. 9 presents the BMS predictions in direct
comparison to the original data of Fig. 2. Overall, deviations for
ground states are within the range of the PBE+U inherent error for
the ceria reduction energy (up to 0.4 eV)39. In certain cases,
ground state mOS for a given metal and coordination are not
correctly identified by the BMS. We attribute these discrepancies
to the inherently small energy differences for these systems. For
instance, DFT adsorption energies of Co-4O in its 3+ and 4+
charge states differ by only 0.06 eV, see Fig. 2. On the other hand,
highly excited states are generally less well-reproduced, causing a
contraction of the energy spans of the individual distributions.
Nonetheless, the BMS model correctly reproduces ensemble
overlaps, and thus mOS dynamicity.
Owing to its compact nature, we can compare the generalized

model obtained from BMS to the phenomenological Born–Haber
(BH) cycle, which only provided the energy difference for two states
(Pt and Pt+), in a fixed coordination environment (2O). While the BH
model is derived from physical insights, BMS functional forms are
data-driven. The BH is based on seven local variables, including the
IP, surface distortion/reduction, a covalent contribution, and
Coulomb interactions, which were evaluated using explicit DFT
distances and Bader charges. Instead, the BMS accounts for nine
metals, three coordination environments, and up to five different
oxidation states, while using only eight variables, none of which
require explicit DFT. Owing to its significant contribution, the IP
appears in both models. The covalent term, ECov, in BH was
approximated by the Pt(H2O)2-binding energy. In the BMS, it is
replaced by the more general metal–oxygen bond-formation
enthalpy, ΔGM�O

bulk . As a bulk property, ΔGM�O
bulk , also contains non-

local ionic interactions that were approximated via the Coulomb
term in the BH model (see Supplementary Note 4). The remaining
contributions in the BH cycle are the reduction and surface
distortion of ceria, both of which are rather small, as no additional
oxygen-rearrangements were considered. In BMS, these effects are
condensed in the surface term, EOxBMS, which further accounts for
long-range repulsion and elastic properties of the surface due to
the localized polarons.
Finally, to provide an outlook on the expected generalization

capabilities of our BMS model, we consider the impact of
different metals and reducible oxide supports. Retaining the
same functional form and atomic descriptors, the adsorption
energies of other SA metals can be predicted by fine tuning the
coefficients, as evaluated for our set of metals through leave-
one-group-out cross-validation, see Supplementary Table 9. As
for the oxides, the surface contributions account for local strain
and polaron structure, and can thus be adapted to other
reducible oxide supports using equivalent descriptors. Account-
ing for defects, such as oxygen vacancies, will require future
extensions of the method40.
In summary, we have shown that the dynamic charge transfer

between isolated single-metal atoms and ceria supports is
ubiquitous and can be predicted via an interpretable, parsimonious
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mathematical expression for the metal-support interactions. Our
data-driven model employs a set of eight variables, including metal
properties like the atomic number, covalent radius, ionization
potentials, metal–oxygen bond strengths, and the coordination
number, as well as oxide contributions, accounting for surface strain
and Coulomb interaction. It generalizes a previous, physical
Born–Haber model and reproduces the adsorption energies for
ground and low-lying excited states for a variety of CeO2(100)-
based SACs. The proposed methodology of augmenting physics-
based models with data-driven machine-learning techniques allows
for a generalization of dynamic electron transfer in metal-support
interactions and paves the way towards the introduction of
complex electronic structure contributions in the modeling of
single atoms for heterogeneous catalysis.

METHODS
Density functional theory
DFT simulations were performed with the Vienna Ab Initio Simulation
Package (VASP; version 5.4.4)41 and the Perdew–Burke–Ernzerhof (PBE)
functional42. For the cerium atoms, an additional Hubbard U correction43,
with an effective Ueff value (Dudarev’s approach44) of 4.5 eV was applied45.
Core electrons were treated with the projector augmented wave (PAW)
method46,47 using the appropriate PAW-PBE pseudopotentials, while
valence electrons were expanded with plane waves up to a basis set
cutoff of 500 eV. Total energies were evaluated at the Gamma point, and
validated by comparison to (3 x 3 x 1) k-point sampling, see Supplementary
Fig. 3. Electronic convergence was set to 10−6 eV and atomic positions
were converged until residual forces fell below 0.01 eVÅ−1.
Slab models for the (111) and (100) surfaces were constructed as (3 x 3),

and for the (110) surface as (2 x 2) supercells, based on optimized ceria
bulk (theoretical lattice parameter: 5.491Å). They extend nine, nine, and six
atomic layers along the vertical direction, with the bottom three, four, and
three layers fixed at the optimized bulk positions, respectively. At least
10Å of vacuum were added on top of the surfaces to avoid non-physical
interactions between periodic images. Ce3+ centers, and consequently
discrete mOS states, were assigned through the localized magnetic
moments of cerium atoms, where we applied a threshold of 0.8 μB, based
on previous work17.
For the Born-Oppenheimer Molecular Dynamics (BOMD) simulations, we

used reduced (2 x 2) supercells of CeO2(100). They were conducted within
the canonical NVT ensemble (constant number of particles, volume and
temperature), using the Nosé-Hoover thermostat48 at an average
temperature of 600 K. Data was collected for 10 ps trajectories, with a
time-step of 1 fs. For the MD simulations, we lowered the electronic
convergence threshold to 10−5 eV. Continuous mOS progressions along
the MD trajectories (center panels of Fig. 1) were obtained by summing up
the absolute magnetic moments of all surface and subsurface cerium
atoms, without the application of a magnetization threshold. The
distributions shown in the right panels of Fig. 1 represent states at
discrete mOS values at increments of 0.1 μB.

Statistical modeling
All the data follows FAIR principles (findable, accessible, interoperable, and
reusable) according to the guidelines outlined by Artrith et al.22. Predictive
models (LR, RF, EN)36 were evaluated using KFCV with a 5-fold data split,
and LOGOCV procedures, see Supplementary Table 6. Data centering and
standardization were applied when necessary. Reported error measures
(R2, RMSE, MAE) were averaged over the different train-test splits, with
standard deviations indicated. Presented energy predictions correspond to
the best-performing models, as identified during the respective cross-
validation procedure. Hyperparameter tuning for the EN and RF models is
provided in Supplementary Figs. 6 and 7. For the final EN model, we used
values of α= 1 × 10−3 and l1-ratio= 0.999 throughout (low total
amount of regularization, high fraction of l1). The RF was constructed as an
ensemble of 128 trees, which were grown to a maximum depth of eight. At
each split, randomly selected features amounting to 60% of the given pool
were evaluated. Training was performed on bootstrapped data sets. For
data visualization, we made extensive use of the Plotly Python library49.
The symbolic equation search was performed via the Bayesian Machine

Scientist (BMS)37, which samples the space of possible functional forms
that fit the training data using using Markov Chain Monte-Carlo. As the

space of mathematical functions to be explored by BMS grows
exponentially with the number of variables, the method requires a
simplified descriptor space50. We limited the number of steps to 10,000, of
which the first 1000 were discarded. The maximum depth was set to 100
iterations per step. At each step, we examined the following BMS outputs:
(i) the current function and its complexity, (ii) the Bayesian Information
Criterion (BIC), (iii) the sum of squared errors (SSE), and (iv) the values of all
the fitting constants. Functions were evaluated by mathematical analysis,
focusing on accuracy and simplicity. For the separate metal (oxide) models
we used six (three) fitting constants, and suitable priors accordingly. BMS
allows continuous, as well as discrete variables as inputs. In our setup, the
latter are given by the metal features and the coordination number, both
of which separate distinct classes of data. In practice, BMS frequently
achieves separation of data classes and approximation of polynomial terms
by the use of trigonometric functions, as their compact nature lowers the
applied penalty on model complexity.
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