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Abstract

In this paper we study unfoldings of planar vector fields in a neighbourhood of a hyperbolic resonant 
saddle. We give a structure theorem for the asymptotic expansion of the local Dulac time (as well as the 
local Dulac map) with the remainder uniformly flat with respect to the unfolding parameters. Here local 
means close enough to the saddle in order that the normalizing coordinates provided by a suitable normal 
form can be used. The principal part of the asymptotic expansion is given in a monomial scale containing a 
deformation of the logarithm, the so-called Roussarie-Ecalle compensator. Especial attention is paid to the 
remainder’s properties concerning the derivation with respect to the unfolding parameters.
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1. Introduction and statements of the results

In this paper we study unfoldings of planar vector fields in a neighbourhood of a hyperbolic 
resonant saddle. It can be viewed as the continuation of a previous paper where we give a CK

normal form for the unfolding with respect to the conjugacy relation, see [10, Theorem A]. By 
means of this normal form in that paper we also provide an asymptotic expansion, uniform with 
respect to the parameters, for the local Dulac time of a resonant saddle, see [10, Theorem B]. The 
Dulac map of a saddle is the transition map from a transverse section �1 at the stable separatrix 
to a transverse section �2 at the unstable separatrix, whereas the Dulac time is the time that 
spends the flow to do this transition, see Fig. 1. By local we mean that �1 and �2 cannot be 
at arbitrary distance from the saddle but close enough in order that we can use the normalizing 
coordinates provided by the normal form. In other words, and more precisely, the local Dulac 
map (respectively, local Dulac time) is the Dulac map (respectively, Dulac time) of the normal 
form.

The asymptotic expansion of the Dulac map (see [15, Chapter 5] and references therein) is a 
key tool to study the cyclicity of a polycycle � (i.e., the maximum number of limit cycles that 
bifurcate from �) and to this end the remainder in the asymptotic expansion must be uniformly 
flat. In this respect recall that the second part of Hilbert’s 16th problem asks for the maximum 
number of limit cycles, called H(n), of a polynomial vector field P(x, y)∂x + Q(x, y)∂y as a 
function of n = max(deg(P ), deg(Q)). It is still unknown whether H(n) is finite. In case that 
the return map of the polycycle is the identity then there is an annulus foliated by periodic orbits 
where the period function (i.e., the time of the return map) is defined. In this context the object of 
study are the so-called critical periodic orbits, which are the critical points of the period function. 
Similarly as with Hilbert’s 16th problem, it arises the notion of criticality of a polycycle �, i.e., 
the maximum number of critical periodic orbits that bifurcate from �, see [7,9]. In the same 
way as for the cyclicity, an asymptotic expansion of the Dulac time with remainder uniformly 
flat constitutes a key tool to study the criticality of a polycycle. Both asymptotic expansions are 
of similar nature, they are given in a monomial scale containing the so-called Roussarie-Ecalle 
compensator, which is deformation of the logarithm.

The asymptotic expansion of the local Dulac map (respectively, time) is a basic building block 
for establishing an asymptotic expansion of the Dulac map (respectively, time) and, in its turn, 
the latter is essential to study the cyclicity (respectively, criticality) of polycycles. In the present 
paper we focus on the local setting. Our main result for the local Dulac time is an asymptotic 
expansion that improves the one we previously obtained, see [10, Theorem B], in two aspects. 
Firstly because it gives a more precise description of the monomials appearing in the principal 
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Fig. 1. Auxiliary transverse sections in the decomposition of the Dulac map D = P2 ◦ D0 ◦ P1 and the Dulac time 
T = T1 + T0 ◦ P1 + T2 ◦ D0 ◦ P1, where P1 (respectively, P2) is the Poincaré map from �1 to �′

1 (respectively, from 
�2 to �′

2) and T1 (respectively T2) is the time that spends the flow to do this transition. Here the local Dulac map is D0
and the local Dulac time is T0.

part. And secondly, more important, it shows that the remainder can be smoothly extended also 
with respect to the unfolding parameters. This was in fact our initial motivation to tackle the 
problem. In order to state our main theorems some results concerning normal forms are needed.

Let V be an open subset of RN and consider a C ∞ unfolding {Xμ}μ∈V of a hyperbolic saddle 
point at the origin. More precisely,

Xμ = A(x,y;μ)x∂x + B(x, y;μ)y∂y,

where A, B ∈ C ∞(U × V ), for some neighbourhood U of (0, 0) ∈ R2, with A(0, 0; μ) > 0 and 
B(0, 0; μ) < 0 for all μ ∈ V . The hyperbolicity ratio of the saddle is

λ = λ(μ) = −B(0,0;μ)

A(0,0;μ)
.

Given m, n ∈Z we also consider the collinear family

Yμ = 1

xmyn
Xμ.

The reason why we permit this “polar” factor is because, when dealing with polynomial vector 
fields, a special attention must be paid to the study of those polycycles with vertices at infinity 
in the Poincaré disc. The factor can come from the line at infinity in a saddle at infinity or, 
more generally, appear in a divisor after desingularizing more general singular points at infinity 
of a polycycle. The case of lines of zeros in at least one of the separatrices is also allowed as 
it can appear after desingularizing a degenerate singular point at finite distance. It is important 
to remark that (by means of a reparametrization of time) this factor can be neglected to study 
the Dulac map but, on the contrary, this cannot be done when dealing with the Dulac time. For 
the same reason, to study the Dulac time we need normal forms with respect to the conjugacy 
relation rather than the equivalence relation.

We recall at this point Theorem A in [10], which generalizes well-known orbital normal forms 
with respect to the equivalence relation (see [6,15] and references therein). To this end let us 
fix μ0 ∈ V and denote λ0 = λ(μ0) for shortness. If λ0 ∈ Q, say λ0 = p/q with (p, q) = 1, 
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then that result shows that for any k ∈ N the family {Yμ}μ∈V is C k conjugated, by means of a 
diffeomorphism �(x, y, μ) = (φ(x, y, μ), μ) defined in a neighbourhood of (0, 0, μ0) ∈ R2×V , 
to the normal form

YNF
μ = 1

η(μ)xmyn + u	Q(u;μ)

(
x∂x + (− λ(μ) + P(u;μ)

)
y∂y

)
,

where η is a C ∞ function, P and Q are polynomials in the resonant monomial u = xpyq with 
the coefficients being also C ∞ functions in μ, and

	 :=
⎧⎨
⎩
⌈

max
(

m
p
, n

q

)⌉
if mq − np �= 0,⌈

max
(

m
p
, n

q

)⌉+ 1 if mq − np = 0.
(1)

Finally, if λ0 /∈ Q then the result shows that we can take P = Q = 0. (In this paper we use the 
common notation � · 	 and 
 · � for the floor and ceiling functions respectively.)

As we already explained, our aim in this paper is to study the Dulac time (as well as the 
Dulac map) associated to YNF

μ . (Note in this respect that the only interesting case is the resonant 
one, i.e., λ0 ∈ Q, because otherwise both maps can be computed explicitly.) More generally, we 
consider the polynomial normal family

Yα,β := 1

β0xmyn + u	
∑M

i=1 βiui−1
Xα (2)

where

Xα := x∂x + 1
q

(
−p +∑N−1

i=0 αi+1u
i
)

y∂y. (3)

In this way, setting α = (α1, . . . , αN) ∈ RN and β = (β0, . . . , βM) ∈ RM+1, we thus consider the 
coefficients of the polynomials P( · ; μ) and Q( · ; μ) in the normal form YNF

μ as independent 
parameters. Naturally we work with α1 ≈ 0 because

λ = λ(α1) := p − α1

q
.

Note also that, with regard to the Dulac map, we can ignore the time and take Xα instead of Yα,β . 
That being said, we denote the Dulac map between (0, 1) × {1} and {1} × (0, 1) by D( · ; α). 
Similarly, the Dulac time between the same sections is denoted by T ( · ; α, β). More explicitly, 
let ϕ(t; s, α) be the solution of Xα passing through (s, 1) ∈ R2 with s > 0 at t = 0. Then, since 
this solution reaches {y = 1} at time t = − ln s due to ϕ1(t; s, α) = set , it turns out that D(s; α) =
ϕ2(− ln s; s, α). Likewise, if φ(t; s, α, β) is the solution of Yα,β passing through (s, 1) ∈R2 with 
s > 0 then the Dulac time is the function T ( · ; α, β) verifying

φ1(t; s,α,β)|t=T (s;α,β) = 1 for all s > 0 small enough.

The present paper has two main results, namely: Theorem A, devoted to the Dulac map 
D(s; α), and Theorem B, addressed to the Dulac time T (s; α, β). The idea behind the proof, 
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and also the aim of the result, is the same for both theorems. We show firstly that we can write 
the function as an infinite series for s > 0 and α1 small enough. Secondly, that we can truncate 
this series in order that the tail is uniformly flat at s = 0. And, thirdly, that the finite truncation 
can be expressed in terms of a polynomial in sp and spω(s; α1), where ω is a deformation of the 
logarithm (see Definition 1.3), the so-called Ecalle-Roussarie compensator.

In this paper we use a more general notion of flatness (see Definition 1.2), which constitutes 
the key point in our approach as well as the main motivation to tackle the problem. Let us ad-
vance that it has better properties with respect to parameters and that this enables us to elucidate 
a delicate point which we think did not received the required attention in the literature (see Re-
mark 1.4).

Definition 1.1. Consider K ∈Z≥0 ∪ {+∞} and an open subset U of RN . We say that a function 
ψ(s; μ) belongs to the class C K

s>0(U), respectively C K
s=0(U), if there exist an open neighbour-

hood � of

{(s,μ) ∈ RN+1; s = 0,μ ∈ U} = {0} × U

in RN+1 such that (s, μ) �→ ψ(s; μ) is C K on � ∩ ((0, +∞) × U
)
, respectively �. �

More formally, the definition of C K
s>0(U) and C K

s=0(U) must be thought in terms of germs 
with respect to relative neighbourhoods of {0} ×U in (0, +∞) ×U . In doing so these sets become 
rings and we have the inclusions C K(U) ⊂ C K

s=0(U) ⊂ C K
s>0(U). These facts are implicitly used 

in Lemma A.3.
We can now introduce the notion of (finitely) flatness that we shall use in the sequel.

Definition 1.2. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . Given some L ∈ R
and μ̂ ∈ U , we say that ψ(s; μ) ∈ C K

s>0(U) is (L, K)-flat with respect to s at μ̂, and we write 
ψ ∈ FK

L (μ̂), if for each ν = (ν0, . . . , νN) ∈ ZN+1
≥0 with |ν| = ν0 + · · · + νN � K there exist a 

neighbourhood V of μ̂ and C, s0 > 0 such that

∣∣∣∣ ∂ |ν|ψ(s;μ)

∂sν0∂μ
ν1
1 · · · ∂μ

νN

N

∣∣∣∣� CsL−ν0 for all s ∈ (0, s0) and μ ∈ V . (4)

If W is a (not necessarily open) subset of U then define FK
L (W) :=⋂

μ̂∈W FK
L (μ̂). �

The class FK
L (W) consists in those functions ψ(s; μ) that are (finitely) flat along {0} × W . 

The usual notion of (finitely) flatness is addressed to functions ψ that are smooth at s = 0 and 
not depending on parameters. In that context one simply requires the s derivatives of ψ to vanish 
at s = 0 up to order K − 1. When dealing with functions that are not smooth at s = 0, the natural 
and common definition is to require the estimates in (4). In this non-smooth context, and when 
the function depends on parameters, one can alternatively require (4) to hold for all μ ∈ V but 
only for derivation with respect to s. This is precisely the notion of flatness used in [14,15]
for the remainder of the asymptotic expansion of the Dulac map (cf. Remark 1.4). For instance 
the function (s, μ) �→ sμ is obviously L-flat at any μ̂ > L according to this alternative notion 
whereas to show that (s, μ) �→ sμ belongs to F∞

L ({μ > L}) requires some computations (see 
Lemma A.4). Coming again to Definition 1.2, note that the case L < K is not excluded (and so 
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it may occur that L − ν0 is negative) and that the case L = K corresponds to the usual notion of 
(finitely) flatness.

The principal part of D( · ; α) and T ( · ; α, β) will be expressed in terms of the following 
deformation of the logarithm.

Definition 1.3. The function defined for s > 0 and κ ∈ R by means of

ω(s;κ) =
{

s−κ−1
κ

if κ �= 0,

− ln s if κ = 0,

is called the Ecalle-Roussarie compensator. �

Lemma A.4 gives several properties of the Ecalle-Roussarie compensator in relation with the 
class FK

L (W) as introduced in Definition 1.2. It shows in particular that (s, κ) �→ ω(s; κ) belongs 
to F∞−ε({κ < ε}) for all ε > 0. With regard to the parameter space of the family of vector fields 
in (3), hereafter we denote

U0 := {α ∈ RN ;α1 = 0} = {0} ×RN−1.

We can now state our two main results. In both statements we set ω = ω(s; α1) and λ = λ(α1)

for the sake of shortness. The first one is a structure theorem for the asymptotic expansion of the 
local Dulac map.

Theorem A. Let D( · ; α) be the Dulac map of the vector field Xα in (3) between the sections 
(0, 1) ×{1} and {1} × (0, 1). Then for each L ∈R there exists a unique �(z, w; α) ∈Q[z, w, α], 
with deg(z,w) � � L

p
− 1

q
, and DL ∈F∞

L (U0) such that

D(s;α) = sλ�(sp, spω;α) + DL(s;α).

Moreover, �(0, 0; α) = 1 in case that L � p
q

and � ≡ 0 otherwise.

This result has strong connections with the seminal works on the structure of the local Dulac 
map by A. Mourtada and R. Roussarie. Indeed, we write the principal part along the same lines 
as Mourtada, see [13, Proposition 2], in the sense that it is the Dulac map of the linear vector 
field x∂x −λy∂y , i.e., s �→ sλ, multiplied by a unity (that we show is polynomial in sp and spω). 
Roussarie (see [14, Theorem F] or [15, Chapter 5]) writes the principal part in a different way 
and it is difficult to compare since he considers the case p = q = 1 only, which does not fit very 
well for q �= 1. Next we make some further comments about it.

Remark 1.4. The proof of Theorem A (and also the forthcoming Theorem B) relies on some 
previous results by R. Roussarie in [14] (see also [15, Chapter 5]) that we gather in Lemma 2.1
and constitute our starting point. In that paper the author studies the cyclicity of a saddle loop 
and to this aim he proves Theorem F, which describes the structure of the local Dulac map 
D(s; α). That result is very similar to our Theorem A, but important differences exist. Firstly his 
result is addressed to the case p = q = 1 because at that time it was already well-known that the 
cyclicity of a saddle loop with λ0 �= 1 is at most one. Secondly his result is more precise in the 
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description of the principal part, i.e., D − DL, since he divides it in the ideal generated by the 
coefficients α1, α2, . . . , αN . And, thirdly, his proof concerning the remainder consists in showing 
that it verifies ∣∣∣∂k

s DL(s;α)

∣∣∣� CsL−k.

This kind of estimate, similar to (4) but without derivation with respect to parameters, behaves 
well through the so-called derivation-division algorithm that yields to the main result in [14]
on the cyclicity of the saddle loop (which in our opinion is perfectly right and, what is more, 
correctly proved). However it does not enable to assert that DL extends to a C L function in (s, α)

at s = 0 (see Example A.2 for a counterexample). Sadly enough, this is precisely what the author 
states in Theorem F with regard to the remainder DL (see also Theorem 14 in [15, page 103]). 
This inexactness yields to a crucial gap in a subsequent paper by the same author [16]. Indeed, in 
that paper he studies the smoothness property of the bifurcation diagram of a generic saddle loop 
unfolding of codimension 2, and to prove the main result he appeals to this (unproved) claim in 
Theorem F. To be more precise, by taking advantage of the smoothness with respect to parameters 
of the remainder, he is able to apply an ad hoc implicit function theorem to prove Proposition 3.2. 
In our Theorem A we show that DL ∈ F∞

L (U0), i.e., that the above bound holds for derivation 
with respect parameters as well, and on the other hand we prove (see Lemma A.1) that any 
function in FK

L (U0) with L > K extends to a C K function in a neighbourhood of {0} × U0 in 
RN+1. We can thus fill the gap between the proof of [14, Theorem F] and its statement. This 
shows in particular the validity of the proof of [16, Proposition 3.2], which constitutes a key step 
to show the main result in that paper. �

Next result provides the structure of the asymptotic expansion of the local Dulac time and in 
its statement we assume that 

⌈
max

(
m
p
, n

q

)⌉
� 0. Let us point out however that we do not need 

this assumption in any of the previous auxiliary results. In this regard note that this hypothesis 
is satisfied if m and n are not both negative. From the point of view of the bifurcation of critical 
periodic orbits, the most interesting situation comes from the Dulac time associated to a saddle 
placed in the line at infinity, and in this case either m > 0 or n > 0.

Theorem B. Let T ( · ; α, β) be the Dulac time of the vector field Yα,β in (2) between the sections 
(0, 1) × {1} and {1} × (0, 1). Suppose that κ := ⌈

max
(

m
p
, n

q

)⌉
� 0. Then for each L ∈R we can 

write

T (s;α,β) = T L(s;α,β) + TL(s;α,β),

where

(1) the principal part is given by

T L(s;α,β) := τ0(β) ln s + sλnτ1(s
p, spω;α,β)− smτ1(s

p,0;α,β)+ sκpτ2(s
p, spω;α,β),

with τ1(z, w; α, β) ∈ Q(α1)[z, w, α2, . . . , αN, β], τ2(z, w;α, β) ∈ Q[z, w,α, β] and τ0(β) ∈
Q[β],

(2) and the remainder TL(s; α, β) belongs to F∞
L (U0 ×RM+1).
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Moreover the principal part verifies the following:

(a) τ1 is linear in β and without poles along α1 = 0.
(b) τ2 is linear in β and τ2(z, 0; α, β) = 0.
(c) τ1 = 0 if mq − np = 0.
(d) τ0 = −β0 if (m, n) = (0, 0) and τ0 = −β1 if 	 = 0, whereas τ0 = 0 in any other case.

In a previous paper we already give a structure theorem for the asymptotic expansion of the 
local Dulac time, see [10, Theorem B]. The main difference between both results is that we 
can now guarantee that the remainder TL is flat along s = 0, not only for the derivation with 
respect to s, but also with respect to α and β (cf. Definition 1.2). Consequently, as we explain in 
Remark 1.4, by applying Lemma A.1 we can assert that if K < L then the remainder TL(s; α, β)

extends to a C K function in a neighbourhood of {0} × U0 ×RM+1 in R ×RN × RM+1. We are 
convinced that this regularity of the remainder will be crucial in future applications, for instance 
to have a better understanding of the bifurcation diagram of the critical periodic orbits of the 
Loud’s centres, see [9]. In fact this kind of property has already been used to study the period 
of the limit cycle appearing in one-parameter saddle loop bifurcations (see [4, Theorem 16]). 
To this end the authors prove Proposition 23, which corresponds to Theorem B particularized to 
m = n = 0 and K = L = 1. (As a matter of fact while trying to extend it we realized that their 
proof contains a bridgeable mistake that we correct here, see Remark 2.4.) Coming back to our 
previous result in [10], let us note that the principal part T L that we provide here is more precise 
than the one given there.

The paper is organized as follows. In Section 2, taking Roussarie’s results in [15, Chapter 5]
as starting point, we consider the solution ϕ(t; s, α) of Xα passing through (s, 1) ∈ R2 at t = 0
and we expand ϕ2(t; s, α) as a power series in s for each fixed t and α. We obtain sharp uniform 
estimates for the radius of convergence of this series (see Lemma 2.5) and also for the derivatives 
of its coefficients (see Lemma 2.7). Next, on account of D(s; α) = ϕ2(− ln s; s, α), in Section 3
we use these results to prove Theorem A. Section 4 is devoted to the proof of Theorem B and to 
this end, see (2), we take advantage of the previous results thanks to the identity

T (s;α,β) =
− ln s∫
0

(
β0x

myn +
M+	−1∑

i=	

βi+1−	(x
pyq)i

)∣∣∣∣∣
{(x,y)=ϕ(t;s,α)}

dt.

Some technical but crucial issues about the sets FK
L (W) are treated in Appendix A. Among other 

properties we show that any g(s; μ) ∈ FK
L (W) with L > K extends to a C K -function (on s and 

the parameter μ) along s = 0. (This applies in particular to the remainder DL in Theorem A, as 
well as to TL in Theorem B.) Finally, in Appendix B we recall some specific results from analysis 
and calculus, in particular the multivariate Faa di Bruno formula for higher-order derivatives of 
a composite function (see Theorem B.1) that we use repeatedly all over the paper.

2. Further results on Roussarie’s series expansion

Observe that performing the singular change of variables {u = xpyq, x = x}, the differential 
equation given by the vector field Xα in (3) is brought to the following form:
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{
ẋ = x,

u̇ = P(u;α) :=∑N
i=1 αiu

i .

The first equation gives x(t, x0) = x0e
t and we denote by u(t, u0; α) the solution of the second 

one with initial condition u(0, u0; α) = u0. For each fixed t and α, we expand it as a power series 
in u0,

u(t, u0;α) =
+∞∑
i=1

gi(t;α)ui
0. (5)

In what follows, for any given δ > 0 we define

Uδ := {α = (α1, . . . , αN) ∈ RN ; |α1| < δ}.

Following this notation, Roussarie [15, §5.1.2] shows the next result with regard to the series 
in (5).

Lemma 2.1. The following assertions hold:

(a) For all i ∈ N , gi(t; α) = eα1t ḡi−1(t; α) with ḡi (t; α) ∈ Q[α, �] where � := eα1t−1
α1

and 
deg� ḡi � i.

(b) For each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exist K0, C0 > 0 such that if t � 0, 
|u0| < C−1

0 e−δt and α ∈ C then the series (5) is absolutely convergent and, moreover, 
|u(t, u0; α)| � K0|u0|eδt .

(c) For all i ∈N , t � 0 and α ∈ C, |gi(t; α)| � K0C
−1
0 (C0e

δt )i .

Proof. The assertion in (a) is proved in Proposition 10. To show (b) we note that, by applying 
Lemma 18 and following the author’s notation,

|u(t, u0;α)| �
+∞∑
i=1

|gi(t;α)||u0|i �
+∞∑
i=1

Gi(t)|u0|i .

On account of this, the result follows by using the estimates that he obtains in the proof of 
Lemma 19, more concretely the upper bound for Gi(t) given in (5.18) replacing e− 1

2 t by e−δt . 
Finally (c) follows from (b) by applying the Cauchy’s estimates (see [18, Theorem 10.26] for 
instance). �

Corollary 2.2. For each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exist C0 > 0 such that the 
function u(t, u0; α) is analytic on an open set containing

{(t, u0, α) ∈RN+2; t � 0, |u0| < C−1
0 e−δt , α ∈ C}.

Proof. Recall that u(t, u0; α) is the solution of the differential equation u̇ = P(u; α) with initial 
condition u(0, u0; α) = u0. Let us denote its maximal interval of existence by (ω−, ω+), where 
ω± = ω±(u0, α). Since P is analytic on RN+1,
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D = {(t, u0, α) ∈ RN+2;ω−(u0, α) < t < ω+(u0, α)}

is an open set in RN+2 and u(t, u0; α) is analytic in D (see [5, Theorem 1.1] and [19, page 34]). 
Moreover, for the same reason, if ω+ is finite then |u(t, u0; α)| tends to +∞ as t ↗ ω+ (see [1, 
Theorem 1.263] or [19, page 17] for instance). Note on the other hand that, by Lemma 2.1, if 
|u0| < C−1

0 e−δt then |u(t, u0; α)| � K0C
−1
0 for all t ∈ (0, ω+) and α ∈ C. Arguing by contradic-

tion this implies that ω+ > − 1
δ

ln(C0|u0|) and concludes the proof of the result. �

Given ν = (ν0, ν1, . . . , νN) ∈ ZN+1
≥0 , we write

∂ν
t,α = ∂ |ν|

∂tν0∂α
ν1
1 · · · ∂α

νN

N

and, following this notation, we expand ∂ν
t,αu(t, u0; α) as a power series in u0,

∂ν
t,αu(t, u0;α) =

+∞∑
i=1

hi(t, α)ui
0. (6)

Similarly as in Lemma 2.1, we want to estimate the functions hi and the convergence of the above 
series in terms of t and α. This is the aim of the next result, where we also write ν = (ν0, ν̄) with 
ν̄ = (ν1, . . . , νN) for the sake of convenience.

Theorem 2.3. For all ν ∈ ZN+1
≥0 there exists a real number ρν̄ , satisfying 1 � ρν̄ � max(|ν̄|, 1)

and independent from ν0, such that for each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exist 
Cν̄ > 0, independent from ν0, and Kν > 0 such that if t � 0, α ∈ C and |u0| < C−1

ν̄ e−δt then

(i) |∂ν
t,αu(t, u0; α)| � Kν |u0|eρν̄δt , and

(ii) the series in (6) is absolutely convergent.

Moreover, for all i ∈N , α ∈ C and t � 0, hi(t, α) = ∂ν
t,αgi(t; α) and

∣∣∂ν
t,αgi(t;α)

∣∣� Kνe
ρν̄δt

(
Cν̄e

δt
)i−1

.

Finally there exists M > 0 such that if |u0| < (2C0)
−1e−δt then

|∂2
u0

u(t, u0;α)| � Meα1t�(t, α1) where �(t,α1) := eα1 t−1
α1

,

for all t � 0 and α ∈ C.

Proof. We begin by proving assertions (i) and (ii) in case that ν0 = 0, i.e., only derivation with 
respect to parameters. To this end for the sake of shortness we use the compact notation

∂
(0,ν1,...,νN )
t,α = ∂ν̄

α = ∂ |ν̄|

∂α
ν1
1 · · · ∂α

νN

N

where ν̄ = (ν1, . . . , νN).
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The proof follows by induction on |ν̄|. The base case |ν̄| = 0 is (b) in Lemma 2.1. To show 
the induction step we first perform the partial derivation ∂ν̄

α on both sides of the equality ∂tu =
P(u; α) and then apply Theorem B.1 to obtain

∂t ∂
ν̄
αu(t, u0;α) =∂ν̄

αP (u(t, u0;α);α)

=
∑

1�|λ|�|ν̄|
∂λP (u;α)

∑
p(ν̄,λ)

ν̄!
q∏

j=1

(∂
	j
α u)kj0

∏N
i=1(∂

	j
α αi)

kji

kj !(	j !)|kj |

∣∣∣∣∣
u=u(t,u0;α)

. (7)

Here, for λ = (λ0, . . . , λN) ∈ ZN+1
≥0 , we use the notation ∂λP (u; α) = ∂ |λ|P(u;α)

∂uλ0∂α
λ1
1 ···∂α

λN
n

and, for 

kj ∈ ZN+1
≥0 , we write kj = (kj0, . . . , kjN). Note also that both summations are multidimen-

sional and the second one is subject to the coupling conditions p(ν̄, λ) defined in (37), namely ∑q

i=1 ki = λ and 
∑q

i=1 |ki |	i = ν̄. In this respect we observe the following:

(a) The only summand in (7) that contains a factor ∂
	j
α u with |	j | = |ν̄| is ∂uP (u; α)∂ν̄

αu. Indeed, 
this is so because if 	j = ν̄ and kj0 �= 0 then |ki | = 0 for i �= j and λ = kj = (1, 0, . . . , 0).

(b) If kj0 = 0 for all j then λ0 = 0. Consequently any summand in (7) not containing a fac-
tor ∂	u with |	| > 0 has the factor ∂(0,	)P (u; α) =∑N

i=1(∂
	
ααi)u

i , which is a polynomial 
vanishing at u = 0.

Accordingly we can split the right hand side of the equation (7) so that it writes as

∂t ∂
ν̄
αu(t, u0;α) = ∂uP (u(t, u0;α);α)∂ν̄

αu(t, u0;α) + R1
ν̄ (t, u0, α) + R2

ν̄ (t, u0, α),

where we define R1
ν̄ to be the sum of those summands with kj0 = 0 for all j = 1, 2, . . . , q while 

R2
ν̄ is the sum of the remaining summands. Note then that

R1
ν̄ (t, u0, α) = uS(u;α)|u=u(t,u0;α)

for some polynomial S(u; α) with degu S = N − 2. The above equality is a first order linear 
differential equation for ∂ν̄

αu(t, u0; α) that, setting Rν̄ = R1
ν̄ + R2

ν̄ and

B(t, u0, α) := exp

⎛
⎝ t∫

0

∂uP (u(s, u0;α);α)ds

⎞
⎠ (8)

for the sake of shortness, yields to

∂ν̄
αu(t, u0;α) = B(t, u0, α)

t∫
0

Rν̄(s, u0, α)

B(s,u0, α)
ds. (9)

Note that we can write ∂uP (u(s, u0; α); α) =∑∞
i=0 pi(s, α)ui

0 with the same radius of con-
vergence as (5) because ∂uP ( · ; α) is polynomial. In addition we have p0(s; α) ≡ α1. Thus, 
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applying (b) in Lemma 2.1 and setting K1 := sup{|∂uP (u; α) − α1|; |u| � K0C
−1
0 , α ∈ C}, if 

|u0| < C−1
0 e−δt then

∣∣∣∣∣∣
t∫

0

(∂uP (u(s, u0;α);α) − α1) ds

∣∣∣∣∣∣�
∞∑
i=1

t∫
0

|pi(s;α)||u0|ids � K1

∞∑
i=1

t∫
0

(C−1
0 eδs)i |u0|ids

= K1

∞∑
i=1

Ci
0|u0|i e

δit − 1

δi
� K1

δ

∞∑
i=1

(C0|u0|eδt )i < +∞,

where in the second inequality we use Cauchy’s estimates (see [18, Theorem 10.26]). Thus, by 
Lemma B.5,

t∫
0

∂uP (u(s, u0;α);α)ds =
+∞∑
i=0

⎛
⎝ t∫

0

pi(s;α)ds

⎞
⎠ui

0

and the series converges absolutely for |u0| < C−1
0 e−δt . Furthermore, if |u0| � (2C0)

−1e−δt and 
setting K2 := K1

δ
then

α1t − K2 �
t∫

0

∂uP (u(s, u0;α);α)ds � α1t + K2 for all t � 0 and α ∈ C.

Consequently, recall (8), if |u0| � (2C0)
−1e−δt then

e−K2eα1t � B(t, u0, α) � eK2eα1t for all t � 0 and α ∈ C. (10)

On the other hand, since x �→ e±x are entire functions, the Taylor series of B(t, u0, α) and 
1/B(t, u0, α) at u0 = 0 converge absolutely for all t � 0 and α ∈ C provided that |u0| <
C−1

0 e−δt . Therefore, from (9) and taking the previous bounds into account, we get that if 
|u0| � (2C0)

−1e−δt then

|∂ν̄
αu(t, u0;α)| � e2K2eα1t

t∫
0

|Rν̄(s, u0, α)| e−α1sds for all t � 0 and α ∈ C. (11)

We are now in position to prove the validity of assertions (i) and (ii) for the case ν0 = 0 and to 
this end recall that Rν̄ = R1

ν̄ +R2
ν̄ . Let us begin with the study of R2

ν̄ by noting that in each one of 
its summands we have that (∂	j u(t, u0; α))kj0 verifies |	j | < |ν̄| for j = 1, 2, . . . , q and that there 
is at least one exponent kj0 strictly positive. Thus, thanks to the induction hypothesis, for each 

j = 1, 2, . . . , q we know that if |u0| < C−1
	j

e−δt then |(∂	j u(t, u0; α))kj0 | � (K	j
|u0|eρ	j

δt
)kj0

for all t � 0 and α ∈ C. We define

p�(ν̄) :=
⋃

1�|λ|�|ν̄|

{
(k1, . . . , kq;	1, . . . , 	q) ∈ p(ν̄, λ) ; |	j | < |ν̄|} ,
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which is nonempty if and only if |ν̄| > 1. Taking this into account, if |ν̄| > 1 then we set

Cν̄ := max
(

2C0,max
(
C	j

; (k1, . . . , kq;	1, . . . , 	q) ∈ p�(ν̄)
))

,

ρν̄ := max
(

1,max
(∑q

j=1 kj0ρ	j
; (k1, . . . , kq;	1, . . . , 	q) ∈ p�(ν̄)

))
and

K3 := max
(∏q

j=1(K	j
)kj0; (k1, . . . , kq;	1, . . . , 	q) ∈ p�(ν̄)

)
,

whereas if |ν̄| = 1 then we define Cν̄ = 2C0, ρν̄ = 1 and K3 = 1. Furthermore we define

K4 := sup
{
|∂λP (u;α)|; |u| � K0C

−1
0 , α ∈ C,1 � |λ| � |ν̄|

}
and

K5 := sup

{∑
1�|λ|�|ν̄|

∑
p(ν̄,λ) ν!∏q

j=1

∏N
i=1(∂

	j αi )
kji

kj !(	j !)|kj | ; α ∈ C
}

Note moreover that |u0|
∑q

j=1 kj0 � |u0| due to 
∑q

j=1 kj0 � 1 and |u0| � 1. On account of these 

definitions and applying (b) in Lemma 2.1, from (7) it follows that if |u0| < C−1
ν̄ e−δt then 

|R2
ν̄ (t, u0, α)| � K6|u0|eρν̄δt for all t � 0 and α ∈ C, where we set K6 := K3K4K5. Let us pro-

ceed next with the study of R1
ν̄ . In this case, due to R1

ν̄ (t, u0, α) = uS(u;α)|u=u(t,u0;α), we define

K7 := sup
{
|S(u;α)|; |u0| � K0C

−1
0 , α ∈ C

}
.

Thus, by applying Lemma 2.1, if |u0| < C−1
0 e−δt then |R1

ν̄ (t, u0, α)| � K0K7|u0|eδt for all t � 0
and α ∈ C. Finally, taking Cν̄ � C0 into account, we can assert that if |u0| < C−1

ν̄ e−δt then

|Rν̄(t, u0, α)| � |R1
ν̄ (t, u0, α)| + |R2

ν̄ (t, u0, α)| � K0K7|u0|eδt + K6|u0|eρν̄δt � K8|u0|eρν̄δt

(12)
for all t � 0 and α ∈ C, where we set K8 := max(K6, K0K7) and we use that ρν̄ � 1. We can 
now plug this inequality in (11) to obtain that if |u0| < C−1

ν̄ e−δt then

|∂ν̄
αu(t, u0;α)| � K8e

2K2 |u0|eα1t

t∫
0

e(ρν̄δ−α1)sds = K8e
2K2 |u0|eα1t

e(ρν̄δ−α1)t − 1

ρν̄δ − α1
� Kν |u0|eρν̄δt

for all t � 0 and α ∈ C, where Kν := K8e
2K2

K9
with K9 := inf{ρν̄δ − α1; α ∈ C}, which is strictly 

positive because |α1| < δ � ρν̄δ. This proves the inductive step with regard to assertion (i). Let 
us turn now to assertion (ii). Since Rν̄ is a polynomial of ∂	u with 0 � |	| < |ν̄| on account of 
property (a), by the induction hypothesis we get that the Taylor series of Rν̄(t, u0, α) at u0 = 0
is absolutely convergent for all t � 0 and α ∈ C provided that |u0| < C−1

ν̄ e−δt . Furthermore, 
from (12), if |u0| < C−1

ν̄ e−δt then
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|Rν̄(t, u0, α)| � K8C
−1
ν̄ e(ρν̄−1)δt for all t � 0 and α ∈ C.

Recall on the other hand that the Taylor series of 1
B(t,u0,α)

at u0 = 0 is absolutely convergent for 

all t � 0 and α ∈ C provided that |u0| < C−1
0 e−δt . In addition the estimates in (10) show that 

1
|B(t,u0,α)| � eK2e−α1t for this range of values. Hence, due to C0 < 2C0 � Cν̄ , if |u0| < C−1

ν̄ e−δt

then the series Rν̄(t,u0,α)
B(t,u0,α)

=∑∞
i=0 ri(t; α)ui

0 is absolutely convergent and the upper bound

∣∣∣∣Rν̄(t, u0, α)

B(t, u0, α)

∣∣∣∣� K8C
−1
ν̄ eK2e((ρν̄−1)δ−α1)t � K8C

−1
ν̄ eK2eρν̄δt

holds for all t � 0 and α ∈ C due to |α1| < δ. Note also that r0(t; α) ≡ 0. As we did before, the 
Cauchy’s estimates show that

|ri(t;α)| � K8C
−1
ν̄ eK2Ci

ν̄e
(ρν̄+i)δt for all i ∈N , t � 0 and α ∈ C.

Consequently, for all i ∈ N , t � 0 and α ∈ C, we get

t∫
0

|ri(s;α)|ds � K8C
−1
ν̄ eK2Ci

ν̄

e(ρν̄+i)δt − 1

(ρν̄ + i)δ
� K9C

i
ν̄e

(ρν̄+i)δt ,

where K9 = K8C
−1
ν̄ eK2

ρν̄δ
. Thanks to these estimates we can assert that if |u0| < C−1

ν̄ e−δt then

∣∣∣∣∣∣
t∫

0

Rν̄(s, u0, α)

B(s,u0, α)
ds

∣∣∣∣∣∣�
+∞∑
i=1

|u0|i
t∫

0

|ri(s;α)|ds � K9e
ρν̄δt

+∞∑
i=1

(
Cν̄ |u0|eδt

)i
< ∞

for all t � 0 and α ∈ C. Therefore, by Lemma B.5,

t∫
0

Rν̄(s, u0, α)

B(s,u0, α)
ds =

+∞∑
i=1

⎛
⎝ t∫

0

ri(s;α)ds

⎞
⎠ui

0

and the series converges absolutely for |u0| < C−1
ν̄ e−δt . Since we already prove this fact for the 

Taylor series of B(t, u0, α) at u0 = 0, from (9) it follows that the Taylor series of ∂ν̄
αu(t, u0; α)

at u0 = 0 converges absolutely for all t � 0 and α ∈ C provided that |u0| < C−1
ν̄ e−δt . This shows 

the inductive step concerning assertion (ii) for the case ν0 = 0.
Let us turn to the proof of the case ν0 > 0. Since ∂tu = P(u; α) we get that ∂n

t u = Pn(u; α) for 
all n ∈ N , where Pn := P∂uPn−1 with P0(u; α) := u. The application of Faa di Bruno formula 
given by Theorem B.1 yields to

∂
(ν0,ν1,...,νN )
t,α u(t, u0;α) = ∂ν̄

αPν0(u(t, u0;α))
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=
∑

1�|λ|�|ν̄|
∂λPν0(u;α)

∑
p(ν̄,λ)

ν̄!
q∏

j=1

(∂
	j
α u)kj0

∏N
i=1(∂

	j
α αi)

kji

kj !(	j !)|kj |

∣∣∣∣∣
u=u(t,u0;α)

(13)

= R̂1
ν (t, u0, α) + R̂2

ν (t, u0, α),

where R̂1
ν consists in all the summands with kj0 = 0 for all j . Hence, due to Pν0(0; α) ≡ 0, 

exactly as we did to show (b), we can write R̂1
ν(t, u0, α) = uSν(u; α)|u=u(t,u0;α) for some poly-

nomial Sν . Thus, setting

K10 := sup
{
|Sν(u;α)|; |u| � K0C

−1
0 , α ∈ C

}

and applying (b) in Lemma 2.1, if |u0| < C−1
0 e−δt then |R1

ν(t, u0, α)| � K0K10|u0|eδt for all 
t � 0 and α ∈ C. On the other hand, since we have already proved the validity of (i) for the par-
ticular case ν0 = 0, it follows that for each j there exist K	j

, C	j
> 0 and ρ	j

� 1 such that 

|∂	j
α u(t, u0; α)| � K	j

|u0|etρ	j for all t � 0 and α ∈ C provided that |u0| � C−1
	j

e−δt . Thus, 

taking upper bounds in (13) as we did before with R2
ν̄ , it follows that there exists Kν > 0

(which we take satisfying Kν � 2K0K10 for convenience) such that if |u0| < C−1
ν̄ e−δt then 

|R̂2
ν (t, u0, α)| � 1

2Kν |u0|eρν̄δt for all t � 0 and α ∈ C. (Here we remark that ρν̄ � 1 and Cν̄ � C0

are the ones previously defined when we tackle the case ν0 = 0.) Hence, if |u0| < C−1
ν̄ e−δt then

|∂ν̄
t,αu(t, u0;α)| � |R̂1

ν (t, u0, α)|+ |R̂2
ν (t, u0, α)| � K0K10|u0|eδt + 1

2Kν |u0|eρν̄δt � Kν |u0|eρνδt

for all t � 0 and α ∈ C. Finally the fact that the Taylor series of ∂ν
t,αu(t, u0; α) is absolutely 

convergent for all t � 0 and α ∈ C provided that |u0| < C−1
ν̄ e−δt follows from (13) using that 

this is true for ∂
	j
α u(t, u0; α) for all j and that ∂λPν0(u; α) is polynomial in u.

So far we have proved assertions (i) and (ii) except for the validity of the upper bound 
ρν̄ � max(|ν̄|, 1). Lemma 2.1 shows that this is true for |ν̄| = 0 because we can take ρ0 = 1. 
The proof for |ν̄| � 1 follows by induction taking into account that

ρν̄ := max
(

1,max
(∑q

j=1 kj0ρ	j
; (k1, . . . , kq;	1, . . . , 	q) ∈ p�(ν̄)

))
.

The base case is also true by definition because ρν̄ = 1 for |ν̄| = 1 (recall that in this case the set 
p�(ν̄) is empty). The inductive step follows by noting that, due to the definition of p(ν̄, λ),

q∑
j=1

kj0ρ	j
�

q∑
j=1

kj0|	j | �
q∑

j=1

(kj0 + · · · + kjN)|	j | =
q∑

j=1

|kj |(	j1 + · · · + 	jN) = |ν̄|,

where we use the inductive step in the first inequality and 
∑q

j=1 |kj |	j = ν̄ in the last equality.
Let us prove next the statement concerning the coefficients hi(t, α) in the series (6). To this 

aim observe that, by assertion (ii), this series converges absolutely for all t � 0 and α ∈ C pro-
vided that |u0| < C−1

ν̄ e−δt . This implies that, for each fixed t � 0 and α ∈ C,
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hi(t, α) = 1

i! ∂i
u0

∂ν
t,αu(t, u0;α)

∣∣∣
u0=0

for all i ∈ N . (14)

On the other hand, thanks to assertion (i), if |u0| < C−1
ν̄ e−δt then

|∂ν
t,αu(t, u0;α)| � Kν |u0|eρν̄δt < KνC

−1
ν̄ e(ρν̄−1)δt .

Therefore, by applying the Cauchy’s estimates,

|hi(t;α)| � KνC
−1
ν̄ e(ρν̄−1)δt

(
Cν̄e

δt
)i = Kν̄e

ρν̄δt
(
Cν̄e

δt
)i−1

for all i � 1, α ∈ C and t � 0. Recall in addition that, by (b) in Lemma 2.1, if |u0| < C−1
0 e−δt

then u(t, u0; α) =∑+∞
i=1 gi(t, α)ui

0 converges absolutely for all t � 0 and α ∈ C. In particular, 
for each fixed t � 0 and α ∈ C, we can assert that gi(t, α) = 1

i! ∂i
u0

u(t, u0;α)
∣∣
u0=0

holds for all 
i ∈ N . Consequently

hi(t, α) = 1

i! ∂i
u0

∂ν
t,αu(t, u0;α)

∣∣∣
u0=0

= 1

i! ∂ν
t,α∂i

u0
u(t, u0;α)

∣∣∣
u0=0

= ∂ν
t,αgi(t, α),

where in the first equality we use (14) and in the second one Corollary 2.2.
It only remains to be proved the upper bound for |∂2

u0
u(t, u0, α)|. To this end we observe that

∂u0u(t, u0;α) = exp

⎛
⎝ t∫

0

∂uP
(
u(s,u0;α);α)ds

⎞
⎠= B(t, u0, α),

where we use ∂t∂u0u = ∂uP (u; α)∂u0u in the first equality and (8) in the second one. Therefore

∂2
u0

u(t, u0;α) = B(t, u0, α)

t∫
0

∂2
uP
(
u(s,u0;α);α)B(s,u0, α)ds.

Setting K11 := sup
{
|∂2

uP (u;α)|; |u| � K0C
−1
0 , α ∈ C

}
, (b) in Lemma 2.1 and the inequalities 

in (10) show that if |u0| < (2C0)
−1e−δt then

|∂2
u0

u(t, u0;α)| � K11e
2K2eα1t

t∫
0

eα1sds = Meα1t�(t, α1),

where we take M = K11e
2K2 . This completes the proof of the result. �

Remark 2.4. Let us mention that Theorem 2.3 corrects a mistake in the proof of [4, Proposition
23]. The authors of that paper split the proof into two intermediate claims. The second one is a 
particular case of assertion (i) in Theorem 2.3 (it corresponds to |ν̄| = 1 and N = 1) but the proof 
given there is not right. Indeed, they consider in page 283 the series p(u(ξ, u0)) =∑+∞

i=1 pi(ξ)ui
0

but the summation index should run from i = 0. This may seem a typo but it has important 
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consequences in order to bound the derivative with respect to parameters because, transferred to 
our proof, it yields to the factor eα1t in (10). That being said, except for this bridgeable mistake 
in the proof of [4, Proposition 23], the main result in that paper with regard to the period of the 
limit cycle emerging from a saddle loop bifurcation is perfectly correct. �

At this point let us denote by t �→ (x(t, p0; α), y(t, p0; α)) the solution of the differential 
system given by the vector field Xα in (3) passing through p0 = (x0, y0) ∈ R2. It is clear that 
x(t, p0; α) = x0e

t . We are interested in the analytical properties of y(t, p0; α) with the initial 
condition p0 = (s, 1). This is the reason why we first studied u = xpyq and in this respect, by 
Lemma 2.1, we know that

u(t, u0;α) =
+∞∑
i=1

gi(t;α)ui
0 = u0e

α1t
+∞∑
i=0

ḡi (t;α)ui
0,

where the series converge absolutely and we use that gi(t; α) = eα1t ḡi−1(t; α). Thus, since 
x(t, p0; α) = x0e

t ,

(
y(t,p0;α)

)q = e−pty
q
0 eα1t

+∞∑
i=0

ḡi (t;α)ui
0 = y

q
0 e(α1−p)t

(
1 +

+∞∑
i=1

ḡi (t;α)ui
0

)
. (15)

Since (1 + z)η =∑+∞
k=0

(
η
k

)
zk for |z| < 1, with the aim of computing 

(
y(t, x0, y0; α)

)j for any 
j ∈ Z we set

ψ
j
0 := 1 and, for k ∈N , ψ

j
k :=

k∑
r=1

(
j/q

r

) ∑
i1+···+ir=k

ḡi1 · · · ḡir . (16)

Our next task is to prove the following result.

Lemma 2.5. For each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exist C0, M > 0 such that the 
identity

(
y(t, s,1;α)

)j = e−λjt
+∞∑
k=0

ψ
j
k (t;α)skp

holds for all j ∈ Z, t � 0, α ∈ C and s > 0 with sp max
(
M�(t,α1),4C0e

δt
)

< 2. Moreover 
under these conditions the series is absolutely convergent.

Proof. Since gi(t; α) = eα1t ḡi−1(t; α) and ḡ0 = 1, from (5) we get

+∞∑
i=1

ḡi (t;α)ui
0 = u(t, u0;α) − u0e

α1t

u0eα1t
= ∂2

u0
u(t, ξ ;α)u2

0

2u0eα1t
for some ξ ∈ [0, u0],
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where in the second equality we apply Taylor’s theorem to the function u0 �→ u(t, u0; α) tak-
ing u(t, 0; α) = 0 and ∂u0u(t, 0; α) = eα1t into account. By applying Theorem 2.3, there exist 
C0, M > 0 such that if |u0| < (2C0)

−1e−δt then

|∂2
u0

u(t, u0;α)| � Meα1t�(t, α1) for all t � 0 and α ∈ C.

Hence if |u0| < (2C0)
−1e−δt then 

∣∣∑+∞
i=1 ḡi (t;α)ui

0

∣∣ � M
2 �(t, α1)|u0| for all t � 0 and α ∈ C. 

Therefore, if |u0| < min
(

2
M�(t,α1)

, (2C0)
−1e−δt

)
then 

∣∣∑+∞
i=1 ḡi (t;α)ui

0

∣∣ < 1 for all t � 0 and 

α ∈ C. Accordingly, since (1 + z)j/q =∑+∞
k=0

(
j/q
k

)
zk for |z| < 1, from (15) and (16) it follows 

that

(
y(t, x0, y0;α)

)j = y
j
0 ej (α1−p)t/q

(
1 +

+∞∑
i=1

ḡi (t;α)ui
0

)j/q

= y
j
0 ej (α1−p)t/q

+∞∑
k=0

ψ
j
k (t;α)uk

0

for all t � 0 and α ∈ C provided that |u0| < 1/ max
(

M
2 �(t,α1),2C0e

δt
)
. Furthermore the second 

series converges absolutely because so it does the first one thanks to Lemma 2.1. Finally, since 
u0 = x

p

0 y
q

0 and λ = p−α1
q

, the result follows taking (x0, y0) = (s, 1). �

The following is a technical lemma that will be used in the proof of our last result in this 
section.

Lemma 2.6. For each m, n ∈Z≥0 there exist polynomials Pmn, Qmn ∈ Z[x, y] with degx Pmn =
degx Qmn = m and degy Pmn = degy Qmn = n such that for any a ∈ R,

∂n
x ∂m

y eaxy = ameaxyPmn(x, ay) and ∂n
x ∂m

y xy = xy−nQmn(lnx, y).

In particular, there exist M1, M2 > 0 such that

∣∣∣∂n
x ∂m

y eaxy
∣∣∣� M1 max(1, |x|, |ay|)m+n|a|meaxy and∣∣∣∂n

x ∂m
y xy

∣∣∣� M2 max(1, | lnx|, |y|)m+nxy−n.

Proof. Note that ∂n
x ∂m

y eaxy = ∂n
x

(
eaxy(ax)m

)
and ∂n

x ∂m
y xy = ∂n

x

(
xy(lnx)m

)
. From here the proof 

follows by induction on n. To this end we set Pm0(x, y) = Qm0(x, y) = xm. Then the inductive 
step follows by taking Pm,n+1 = yPmn + ∂xPmn and Qm,n+1 = (y − n)Qmn + ∂xQmn. �

Lemma 2.7. For each compact set C ⊂ Uδ with δ ∈ (0, 12 ], j ∈ Z and ν ∈ ZN+1
≥0 there exist 

Cjν, Kν > 0 such that

|∂ν
t,αψ

j
k (t;α)| � Kν(k + 1)3|ν|(Cjν)

k max(1, t)|ν|e(3k+|ν|)δt

for all k ∈ Z≥0, t � 0 and α ∈ C.
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Proof. Note first that, on account of the definition in (16),

∂νψ
j
k =

k∑
r=1

(
j/q

r

) ∑
i1+···+ir=k

∂ν(ḡi1 · · · ḡir ),

where, due to gi(t; α) = eα1t ḡi−1(t; α) and applying Theorem B.2,

∂ν(ḡi1 · · · ḡir ) =
∑

	0+...+	r=ν

a	0,...,	r ∂
	0(e−α1rt )∂	1gi1+1 · · · ∂	r gir+1.

We remark that this summation is multidimensional with 	0, . . . , 	r ∈ ZN+1
≥0 and that a	0,...,	r =(

ν
	0,...,	r

)
are the generalized multinomial coefficients in Remark B.3. Setting 	0 = (	00, . . . , 	0N)

then, by Lemma 2.6, ∂	0(e−α1rt ) = ∂
	00
t ∂

	01
α1 (e−α1rt ) = (−r)	01e−α1rtP	01	00(t, −α1r) if 	02 =

. . . = 	0N = 0 and zero otherwise. We have in addition that |∂	0(e−α1rt )| �
M	0 max(1, |t |, |rα1|)|	0|r	01e−α1rt . On the other hand, by Theorem 2.3,

|∂	
t,αgi+1(t;α)| � K	e

ρ	δt (C	e
δt )i for all i ∈ N , α ∈ C and t � 0.

Thus, if we set M̂ν := max(M	; 	 � ν), Ĉν := max(C	; 	 � ν) and K̂ν := max(K	; 	 � ν), then

∣∣∂ν
(
ḡi1 · · · ḡir

)
(t;α)

∣∣
�

∑
	0+...+	r=ν

a	0,...,	r M̂ν(K̂ν)
r max(1, |t |)|ν|r2|ν|e(r+ρ	1+...+ρ	r )δt (Ĉνe

δt )i1+...+ir .

Here we use |α1| � δ < 1, 	0 � ν and r � 1, which implies

max(1, |t |, |rα1|)|	0|r	01 � max(1, |t |, |r|)|ν|rν1 � max(1, |t |)|ν|r2|ν|.

Hence, since ρν � max(|ν|, 1) � 1 + |ν| thanks to Theorem 2.3 and, on the other hand, |	0| +
. . . + |	r | = |ν| and r � k = i1 + · · · + ir , we obtain

∣∣∂ν
(
ḡi1 · · · ḡir

)
(t;α)

∣∣� M̂ν(K̂νĈν)
kk2|ν| max(1, t)|ν|e(3k+|ν|)δt ∑

	0+...+	r=ν

a	0,...,	r .

Thus, since 
∑

	0+...+	r=ν a	0,...,	r = (r + 1)|ν| � (k + 1)|ν| thanks to Remark B.3, we get

∣∣∂ν
(
ḡi1 · · · ḡir

)
(t;α)

∣∣� M̂ν(K̂νĈν)
k(k + 1)3|ν| max(1, t)|ν|e(3k+|ν|)δt .

Accordingly, since |(j/q
r

)| � max(|j/q|, 1)r � max(|j |, 1)k for all j ∈ Z,

∣∣∣∂νψ
j
k (t;α)

∣∣∣� M̂ν(K̂νĈν)
k(k + 1)3|ν| max(1, t)|ν|e(3k+|ν|)δt

k∑
r=1

max(|j |,1)k
∑

i1+···+ir=k

1

= M̂νp(k)
(

max(|j |,1)K̂νĈν

)k

(k + 1)3|ν| max(1, t)|ν|e(3k+|ν|)δt ,
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where p(k) is the number of partitions of k and it is easy to see that p(k) �
(2k−1

k

)
� 22k−1 � 4k . 

Hence, setting Cjν = 4 max(|j |, 1)K̂νĈν and Kν = M̂ν , the result follows. �

3. Dulac map

This section is entirely devoted to prove Theorem A, that will follow almost immediately 
from Theorem 3.3. In the proof of this result, and the forthcoming Proposition 4.2, we will use 
the following lemma together with this easy observation:

Remark 3.1. The function φ(s) = sα(− ln s)m is monotonous increasing on the interval (0, 1
e
)

provided that α > m � 0 because ∂sφ(s) = −sα−1(− ln(s))m−1(m + α ln s). �

Lemma 3.2. For every ρ ∈ (0, 1) and n ∈Z+ there exists A > 0 such that 
∑

k�K knrk � AKnrK

for all K ∈ N and 0 � r � ρ.

Proof. Setting c	 := (
n
	

)∑+∞
i=0 in−	ρi and A :=∑n

	=0 c	 we obtain

+∞∑
k=K

knrk =
+∞∑
i=0

(i + K)nri+K = rK
n∑

	=0

(
n

	

)
K	

+∞∑
i=0

in−	ri � rK
n∑

	=0

c	K
	 � AKnrK,

where in the last inequality we take K � 1 into account. �

Theorem 3.3. Consider the family of vector fields {Xα}α∈Uδ defined in (3) and let D( · ; α) be 
the Dulac map of Xα between the transversal sections {y = 1} and {x = 1}. Then the following 
holds:

(a) For each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exists s0 > 0 such that

D(s;α) =
+∞∑
k=0

ψ1
k (− ln s;α)skp+λ, for all s ∈ (0, s0) and α ∈ C,

and the series is absolutely convergent. Moreover, for each K ∈ N there exists �(z, w; α) ∈
Q[z, w, α] with degz,w(�) < K and �(0, 0; α) = 1 such that

K−1∑
k=0

ψ1
k (− ln s;α)skp+λ = sλ�(sp, spω;α), where ω = ω(s;α1).

(b) Finally, for each L ∈R there exists KL ∈Z≥0 such that

+∞∑
k=KL

ψ1
k (− ln s;α)skp+λ ∈F∞

L (U0). (17)

Proof. The solution x(t, x0, y0; α) = x0e
t of Xα with initial condition (x0, y0) = (s, 1) in-

tersects the transversal section {x = 1} at t = − ln s. Hence the Dulac map is given by 
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D(s; α) = y(t, s,1;α)|t=− ln s . On account of this, the first assertion in (a) will follow by ap-
plying Lemma 2.5 once we show that we can take s0 > 0 small enough such that

sp max
(
M�(t,α1),4C0e

δt
)∣∣

t=− ln s
< 2 for all s ∈ (0, s0).

In this respect note that, by applying (b) in Lemma A.4, sp�(− ln s, α1) = spω(s; α1) tends to 0
as s → 0+ uniformly in α1 ∈ (−δ, δ), and this is also true for sp−δ because p − δ � p − 1

2 > 0. 
Consequently it is clear that there exists s0 > 0 small enough such that the above inequality 
holds and so the first assertion is true. With regard to second one, from (a) in Lemma 2.1 and 
(16) it follows that ψ1

k (− ln s; α) = ηk(ω; α) where ηk ∈ Q[ω, α] with degω(ηk) � k. Then it is 
clear that, for each k = 0, 1, . . . , K − 1, there exists a homogeneous polynomial η̂k ∈ Q[z, w, α]
with degw(η̂k) � k such that we can write ψ1

k (− ln s; α)skp = η̂k(s
p, spω; α). Since η̂0 ≡ 1, this 

shows the validity of the second assertion in (a).
In order to prove (b) we claim that for each ν ∈ ZN+1

≥0 there exists s0 > 0 small enough such 
that the series 

∑
k�0 ∂ν

s,α(ψ1
k (− ln s; α)spk+λ) converges uniformly on (0, s0) × C, where C is 

any compact set in Uδ that we hereafter. By the Weierstrass M-test, to this end it suffices to show 
that there exists a sequence of positive numbers {Mk}k∈N with 

∑
k�1 Mk < ∞ such that, for 

some kν ∈N large enough,

|∂ν
s,α(ψ1

k (− ln s;α)skp+λ)| � Mk, for all k � kν , s ∈ (0, s0) and α ∈ C.

By applying Theorem B.2 we have that

∂ν(ψ1
k (− ln s;α)skp+λ) =

∑
	1+	2=ν

a	1	2∂
	1(ψ1

k (− ln s;α))∂	2(spk+λ) (18)

with a	1	2 = (
ν

	1,	2

)
. Setting 	̂1 = (0, 	11, . . . , 	1N) it turns out that, for each fixed s and α,

|∂	1
s,α(ψ1

k (− ln s;α))| = |∂	10
s (∂	̂1

α ψ1
k )(− ln s;α)|

� C	10s
−	10 max

j∈{0,...,	10}
|(∂(j,	11,...,	1N )ψ1

k )(− ln s,α)|,

where C	10 > 0 depends only on 	10. The above inequality is clear in case that 	10 = 0, whereas 
for 	10 � 1 it follows easily by applying the one-dimensional Faa di Bruno formula

∂n
s (f (g(s))) =

n∑
j=1

(∂
j
s f )(g(s))

∑
p(n,j)

n!
n∏

i=1

(∂ig(s))ki

(ki !)(i!)ki

taking n = 	10, f = ∂
	̂1
α ψ1

k and g = − ln s and noting that, in doing so, ∂ig(s) = (−1)i(i −1)!s−i

and 
∑n

i=1 iki = n. Thus by applying Lemma 2.7 we deduce that, for all s ∈ (0, 1/e) and α inside 
a compact subset C of Uδ with δ ∈ (0, 12 ],

|∂	1
s,α(ψ1

k (− ln s;α))| � K̂	1(k + 1)3|	1|(Ĉ	1)
k(− ln s)|	1|s−(3k+|	1|)δ−	10 , (19)

where, following the notation in that result,
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K̂	1 = C	10 max(K(j,	11,...,	1N); j = 0, . . . , 	10) and Ĉ	1 = max(C1,(j,	11,...,	1N); j = 0, . . . , 	10)

and we use that max(1, − ln s) = − ln s for s ∈ (0, 1/e). In addition, since λ = p−α1
q

, Lemma 2.6
shows that

|∂	2(spk+λ)| = |∂	20
s ∂	21

α1
(spk+λ)| � M2 max(− ln s,pk + λ)|	2|spk+λ−	20q−	21

� C	2(k + 1)|	2|(− ln s)|	2|spk+λ−	20 ,

because pk + λ � p(k + 1) + 1 � 2p(k + 1) due to p, q � 1, |α1| � δ < 1 and we set C	2 =
(2p)|	2|q−	21M2. Here we also use that max(x, y) � xy when x, y � 1. Using this inequality and 
the one in (19), from (18) we obtain

|∂ν(ψ1
k (− ln s;α)skp+λ)| � K̄ν(C̄ν)

k(k + 1)3|ν|(− ln s)|ν|s(p−3δ)k+λ−|ν|δ−ν0, (20)

where we set C̄ν := max(Ĉ	1; 	1 � ν) and, on account of 
∑

	1+	2=ν a	1	2 = 2|ν|,

K̄ν := 2|ν| max(K̂	1C	2;	1 + 	2 = ν).

Let us remark that the above estimate holds for all s ∈ (0, 1/e) and α ∈ C ⊂ Uδ with δ ∈ (0, 12 ]. 
As a matter of fact, at this point we shrink it so that δ ∈ (0, 14 ), which in particular implies 
p − 3δ � 1

4 . Consequently, using also the fact that λ > 0, from (20) we get

|∂ν(ψ1
k (− ln s;α)skp+λ)| � K̄ν(C̄ν)

k(k + 1)3|ν|(− ln s)|ν|s(k−|ν|)/4−ν0 =: mk(s). (21)

On account of Remark 3.1 it easily follows that a sufficient condition for s �→ mk(s) to be 
monotonous increasing on (0, 1/e) is that

k > 9|ν| =: kν.

Note on the other hand that

mk(s) = K̄ν(C̄νs
1/4)k(k + 1)3|ν|(− ln s)|ν|s−|ν|/4−ν0 .

Thus if we take s0 := min
( 1

e
, (2C̄ν)

−4
)

then the series with general term Mk := mk(s0) is 
summable and, additionally, from (21) and the monotonicity of mk(s) on (0, 1/e),

|∂ν(ψ1
k (− ln s;α)skp+λ)| � mk(s) < Mk for all s ∈ (0, s0) and k � kν .

This proves the validity of the claim and consequently, by applying Lemma B.4 recursively, if 
s ∈ (0, s0) and α ∈ Uδ then

∂ν
s,α

⎛
⎝ +∞∑

k=KL

ψ1
k (− ln s;α)spk+λ

⎞
⎠=

+∞∑
k=KL

∂ν
s,α

(
ψ1

k (− ln s;α)spk+λ
)

(22)
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for all ν ∈ ZN+1
≥0 and KL ∈ N . (We stress that the above identity is valid regardless of KL � kν

and this is crucial in what follows because kν depends on ν.)
We are now in position to finish the proof of the result. We will show that (17) holds taking 

KL := max(0, 
4L� + 4). To this end, recall Definition 1.2, we fix any ν ∈ ZN+1
≥0 and α� =

(0, α2, . . . , αN) ∈ U0 = {0} × RN−1, and we take a relatively compact neighbourhood V of α�

contained in Uδ with δ = min( 1
4 , 1

|ν| ). Then, from (22) and using the upper bound in (20), for 
each s ∈ (0, s0) and α ∈ V we have

∣∣∣∣∣∣∂ν
s,α

⎛
⎝ +∞∑

k=KL

ψ1
k (− ln s;α)spk+λ

⎞
⎠
∣∣∣∣∣∣�

+∞∑
k=KL

∣∣∣∂ν
s,α(ψ1

k (− ln s;α)spk+λ)

∣∣∣

� K̄ν(− ln s)|ν|sλ−|ν|δ−ν0

+∞∑
k=KL

(k + 1)3|ν|(C̄νs
p−3δ)k

� K̄νMνs
−|ν|δ−ν0A(KL + 1)3|ν|(C̄ν)

KLs(p−3δ)KL

� K̄νMνA(KL + 1)3|ν|(C̄ν)
KLs

1
4 KL−1−ν0 � CsL−ν0 .

In the third inequality above we apply Lemma 3.2 and set Mν := sup{sλ(− ln s)|ν|; s ∈
(0, s0), |α1| � δ}. Next, in the fourth inequality, we take δ = min( 1

4 , 1
|ν| ) into account. Finally 

in the last inequality we set C := K̄νMνA(KL + 1)3|ν|(C̄ν)
KL and use that KL � 4(L + 1). This 

completes the proof of the result. �

Proof of Theorem A. By Theorem 3.3, for each compact set C ⊂ Uδ with δ ∈ (0, 12 ] there exists 
s0 > 0 such that

D(s;α) =
+∞∑
k=0

ψ1
k (− ln s;α)skp+λ for all s ∈ (0, s0) and α ∈ C.

In addition, for each L ∈R there exists KL ∈Z≥0 such that

DL(s;α) :=
+∞∑

k=KL

ψ1
k (− ln s;α)skp+λ ∈ F∞

L (U0).

If KL = 0 then the result follows taking � ≡ 0. If, on the contrary, KL ∈N then by Theorem 3.3
we know that there exists �̂(z, w; α) ∈ Q[z, w, α] with �̂(0, 0; α) = 1 such that

KL−1∑
k=0

ψ1
k (− ln s;α)skp+λ = sλ�̂(sp, spω;α),

where ω = ω(s; α1). By gathering the homogenous part of �̂ of i-th degree, for i =
0, 1, . . . , d̂ := deg(z,w) �̂, it turns out that we can write sλ�̂(sp, spω) = ∑d̂

i=0 sλ+pipi(ω; α)

where pi(w; α) ∈ Q[w, α] with degw pi � i. Then, due to λ = p−α1
q

and by (d) in Lemma A.4, 
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note that sλ+pipi(ω; α) ∈ F∞
L (U0) provided that i > L

p
− 1

q
. Consequently if L � p

q
then 

there exists a unique polynomial �(z, w; α) ∈ Q[z, w, α] with �(0, 0; α) = 1 and deg(z,w) � �
�L

p
− 1

q
	 =: d , such that

�(z,w;α) =
d∑

i=0

spipi(ω;α) and
d̂∑

i=d+1

sλ+pipi(ω;α) ∈F∞
L (U0),

where, in case that d̂ � d , the second summation is void and we set pi ≡ 0 for i > d̂ . Hence 
the result follows taking � and 

∑+∞
k=d+1 ψ1

k (− ln s; α)skp+λ instead of �̂ and DL respectively. 
Observe on the other hand that if L < p

q
then sλ�̂(sp, spω) =∑d

i=0 sλ+pipi(ω; α) ∈ F∞
L (U0)

and so in this case the result follows taking � ≡ 0 instead of �̂. This concludes the proof of 
the result since the uniqueness of the polynomial � in the statement follows from the fact that 
sλ+piω	 /∈F∞

L (U0) if i � d . �

4. Dulac time

In this section we will prove Theorem B. To this aim, for the sake of convenience, we begin 
by introducing

Tijk(s;α) :=
− ln s∫
0

e(i−λj)tψ
j
k (t;α)dt, for i, j ∈Z and k ∈ N , (23)

and in its regard we prove the following result.

Lemma 4.1. For each i, j ∈ Z and δ ∈ (0, 12 ] there exists k0 ∈ Z≥0 such that for all ν ∈ ZN+1
≥0

and compact set C ⊂ Uδ there exist Cν, Kν > 0 so that the upper bound

∣∣∂νTijk(s;α)
∣∣� Kν(k + 1)3|ν|(Cν)

k(− ln s)|ν|sλj−i−ν0−(3k+|ν|)δ

holds for all k � k0, s ∈ (0, 1/e) and α ∈ C.

Proof. The result follows by applying Lemma 2.7 to the given compact set C ⊂ Uδ and ν ∈
ZN+1

≥0 . Denote ν = (ν0, ν1, . . . , νN) and suppose first that ν0 = 0. In this case if s ∈ (0, 1/e) and 
α ∈ C then

|∂ν(Tijk(s;α)| �
∑

	1+	2=ν

(
ν

	1, 	2

) − ln s∫
0

∣∣∣∂	1
α (e(i−λj)t )∂	2

α ψ
j
k (t;α)

∣∣∣dt

� 2|ν|K̂ν(k + 1)3|ν|(Cν)
k

− ln s∫
0

e(i−λj)t (j t/q)	11 max(1, t)|	2|e(3k+|	2|)δt dt
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� Kν(k + 1)3|ν|(Cν)
k(− ln s)|ν|

− ln s∫
0

e(i−λj+(3k+|ν|)δ)t dt

� Kν(k + 1)3|ν|(Cν)
k(− ln s)|ν|sλj−i−(3k+|ν|)δ,

where in the first inequality we apply Theorem B.2, in the second one Lemma 2.7 and Re-
mark B.3, in the third one we set Kν := 2|ν|(j/q)ν1K̂ν and we use that max(1, t) � − ln s for all 
t ∈ (0, − ln s) due to s ∈ (0, 1/e), and in the last one we take

k � k0 := max
(

0,
⌈

1
3δ

(
1 − i + p+δ

q
|j |
)⌉)

(24)

in order that i − λj + (3k + |ν|)δ) � 1 holds for all α ∈ Uδ and k � k0. Here we use that λ ∈(
p−δ
q

,
p+δ
q

)
due to |α1| < δ and λ = p−α1

q
. We stress, and this is crucial, that k0 is independent 

from ν and C. This proves the result for ν0 = 0. Let us consider next the case ν0 � 1 and to this 
end we denote ν′ := (ν0 − 1, ν1, . . . , νN). Thus, from (23) and Theorem B.2,

∂νTijk(s;α) = −s−1∂ν′ (
sλj−iψ

j
k (− ln s;α)

)

= −s−1
∑

	1+	2=ν′

(
ν′

	1, 	2

)
∂	1(sλj−i )∂	2(ψ

j
k (− ln s;α)).

Then the application of Lemma 2.6 and Lemma 2.7 show respectively∣∣∣∂	1(sλj−i )

∣∣∣� M	1(− ln s)|	1| max(1, |λj − i|)|	1|sλj−i−	10(|j |/q)	10

and, since max(1, − ln s) = − ln s due to s ∈ (0, 1/e),∣∣∣∂	2(ψ
j
k (− ln s;α))

∣∣∣� K̂	2(k + 1)3|	2|(Ĉj	2)
k(− ln s)|	2|s−(3k+|	2|)δ.

Setting K̄ν := sup
{
M	1K̂	2 max(1, |λj − i|)|	1|(|j |/q)	10;α ∈ C, 	1 + 	2 = ν′

}
and Cν :=

max(Ĉj	2; 	2 � ν′), we can assert that if s ∈ (0, 1/e) and α ∈ C then

∣∣∂νTijk(s;α)
∣∣� 2|ν|−1K̄ν(k + 1)3|ν|(Cν)

k(− ln s)|ν|sλj−i−ν0−(3k+|ν|)δ.

Here we also take 	1 + 	2 = ν′ = ν − (1, 0, . . . , 0) and Remark B.3 into account. Consequently, 
setting k0 := 0 and Kν := 2|ν|−1K̄ν , the result follows in case that ν0 � 1. �

Recall at this point, see (2), that Theorem B concerns with the Dulac time associated to

Yα,β = 1

β0xmyn + u	
∑M

i=1 βiui−1
Xα,

where m, n, 	 ∈Z and u = xpyq with p, q ∈N . For this reason, as an intermediate step, we next 
consider the Dulac time Tij ( · ; α) of 1

xiyj Xα for any i, j ∈ Z. In its regard the next statement 
explains the convenience of introducing Tijk, see (23).
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Proposition 4.2. For each compact set C ⊂ Uδ with δ ∈ (0, 14 ] there exists s0 > 0 such that the 
Dulac time Tij ( · ; α) of the vector field 1

xiyj Xα , where i, j ∈ Z, writes as

Tij (s;α) =
+∞∑
k=0

si+pkTijk(s;α) for all s ∈ (0, s0) and α ∈ C (25)

and the series is absolutely convergent. Moreover, for each L ∈ R there exists KL ∈ Z≥0 such 
that

+∞∑
k=KL

si+pkTijk(s;α) ∈F∞
L (U0). (26)

Proof. Let t �→ (
x(t, p0; α), y(t, p0; α)

)
be the solution of Xα passing through p0 ∈R2 at t = 0. 

Note that if p0 = (s, 1) with s > 0 then x(t, p0; α) = set intersects the transversal section {x = 1}
at t = − ln s. Thus the time Tij (s; α) that spends the solution of 1

xiyj Xα starting at (s, 1) with 
s > 0 to reach the transversal section {x = 1} is given by

Tij (s;α) =
− ln s∫
0

(x(t, s,1;α))i(y(t, s,1;α))j dt =
− ln s∫
0

sie(i−λj)t
+∞∑
k=0

ψ
j
k (t;α)skpdt,

where in the second equality we apply Lemma 2.5. In this respect observe that, due to 
∂t�(t, α1) = eα1t > 0, for all t ∈ (0, − ln s) we have

sp max
(

M
2 �(t,α1),2C0e

δt
)
< sp max

(
M
2 �(t,α1),2C0e

δt
)∣∣

t=− ln s

= sp max
(

M
2 ω(s;α1),2C0s

−δ
)
< 1,

provided that s > 0 is small enough because lims→0+ sp−δ = 0 and, by (b) in Lemma A.4, 
spω(s; α1) tends to zero as s → 0+ uniformly on Uδ . Consequently, recall the definition in (23), 
the first assertion in the statement will follow by applying Lemma B.5 once we show that for 
each compact set C ⊂ Uδ with δ ∈ (0, 14 ] there exists s0 > 0 such that

+∞∑
k=0

− ln s∫
0

si+kpe(i−λj)t
∣∣∣ψj

k (t;α)

∣∣∣dt < +∞ for all s ∈ (0, s0) and α ∈ C. (27)

With this aim let us note that, by applying Lemma 2.7 with |ν| = 0,

− ln s∫
0

si+kpe(i−λj)t
∣∣∣ψj

k (t;α)

∣∣∣dt � K0(Cj0)
ksi+kp

− ln s∫
0

e(i−λj+3kδ)t dt

= K0(Cj0)
ksi+kp s−(i−λj+3kδ) − 1

i − λj + 3kδ
� K0(Cj0)

ksk(p− 3
4 )+λj ,
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where in the last inequality we use that p−3δ � 1
4 , due to δ ∈ (0, 14 ), and we take k large enough 

so that i − λj + 3kδ � 1. Thus the above upper bound readily shows the validity of (27) taking 
s0 = (Cj0)

−1/(p− 3
4 ) because it guarantees that Cj0s

p− 3
4 < 1 for all s ∈ (0, s0).

With regard to the last assertion in the statement let us first note that, by applying Theorem B.2,

∂ν
(
si+pkTijk(s;α)

)
=

∑
	1+	2=ν

(
ν

	1, 	2

)
∂	1(si+pk)∂	2(Tijk(s;α)).

Accordingly, by Lemma 4.1, there exists k0 ∈ Z≥0 such that, for all ν ∈ ZN+1
≥0 and compact set 

C ⊂ Uδ ,

|∂ν(si+pkTijk(s;α))|

�
∑

	1+	2=ν

(
ν

	1, 	2

)
K	2 |i + kp|	10(k + 1)3|	2|(C	2)

k(− ln s)|	2|sλj+pk−	10−	20−(3k+|ν|)δ

provided that k � k0, s ∈ (0, 1
e
) and α ∈ C. Since |i + pk| � (k + 1)(|i| + p), setting Ĉν =

max(C	2; 	2 � ν) and K̂ν := 2|ν| max(K	2(|i| + p)	10; 	1 + 	2 = ν), we can assert that if k � k0, 
s ∈ (0, 1/e) and α ∈ C then

|∂ν(si+pkTijk(s;α))| � K̂ν(k + 1)4|ν|(Ĉν)
k(− ln s)|ν|sλj+(p−3δ)k−ν0−|ν|δ (28)

� K̂ν(k + 1)4|ν|(Ĉν)
k(− ln s)|ν|sγ+(k−|ν|)/4−ν0 =: mk(s),

where in the first inequality we also take 	1 + 	2 = ν and Remark B.3 into account, and in the 
second one we use that δ ∈ (0, 14 ), p � 1 and λj � −p+δ

q
|j | =: γ . (Let us remark, it will be 

important later on when we use the previous inequalities, that k0 is independent from ν and C.) 
On account of Remark 3.1, a sufficient condition for s �→ mk(s) to be monotonous increasing on 
(0, 1/e) is that k > 9|ν| + 4(ν0 − γ ), and for this reason we set

k̄ν := max (
5|ν| + 4(ν0 − γ )� , k0) .

Note on the other hand that, due to

mk(s) = K̂ν(Ĉνs
1/4)k(k + 1)4|ν|(− ln s)|ν|sγ−|ν|/4−ν0 ,

if we set s0 := min(1/e, (2Ĉν)
−4) then the series with general term Mk := mk(s0) is summable 

and, moreover, thanks to the monotonicity of mk(s) on (0, 1/e),

|∂ν(si+pkTijk(s;α))| � mk(s) � Mk for all s ∈ (0, s0), α ∈ C and k � k̄ν .

Hence, thanks to the Weierstrass M-test, for each ν ∈ ZN+1
≥0 the series 

∑∞
k=0 ∂ν(si+pkTijk(s; α))

converges uniformly for s ∈ (0, s0) and α ∈ C. Consequently, by applying recursively Lemma B.4
starting from (25), we have that for each compact set C ⊂ Uδ and ν ∈ ZN+1

≥0 there exists s0 > 0
small enough such that if s ∈ (0, s0) and α ∈ C then
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∂νTij (s;α) = ∂ν

(+∞∑
k=0

si+pkTijk(s;α)

)
=

+∞∑
k=0

∂ν
(
si+pkTijk(s;α)

)
. (29)

We are now in position to finish the proof. Indeed, we claim that (26) holds taking

KL := max
(
k0,

⌈
4L + 4p+1

q
|j |
⌉

+ 8
)

.

(Recall that k0 is the nonnegative integer given by Lemma 4.1, see (24), which is relevant for 
our purpose because it guarantees the upper bound (28) for k � k0.) We point out that KL is 
independent from ν and C. In order to show (26), recall Definition 1.2, we fix any ν ∈ ZN+1

≥0 and 
α� = (0, α2, . . . , αN) ∈ U0 = {0} ×RN−1, and we take a relatively compact neighbourhood V of 
α� contained in Uδ with δ = min( 1

4 , 1
|ν| ). Then, from (29) and using the upper bound in (28), for 

each s ∈ (0, s0) and α ∈ V we have∣∣∣∣∣∣∂ν
s,α

⎛
⎝ +∞∑

k=KL

(si+pkTijk(s;α)

⎞
⎠
∣∣∣∣∣∣�

+∞∑
k=KL

∣∣∣∂ν
s,α(si+pkTijk(s;α))

∣∣∣

� K̂ν(− ln s)|ν|sλj−|ν|δ−ν0

+∞∑
k=KL

(k + 1)4|ν|(Ĉνs
p−3δ)k

� K̂νM̂νs
λj−|ν|δ−ν0−1A(KL + 1)4|ν|(Ĉν)

KLs(p−3δ)KL

� K̂νM̂νA(KL + 1)4|ν|(Ĉν)
KLsλj+ 1

4 KL−2−ν0 � CsL−ν0 .

In the third inequality above we apply Lemma 3.2 and set M̂ν := sup{s(− ln s)|ν|; s ∈ (0, s0)}. 
Next, in the fourth inequality, we take δ = min( 1

4 , 1
|ν| ) and p � 1 into account. Finally in the last 

inequality we use the definition of KL, which implies λj + 1
4KL − 2 � L due to λ < p+δ

q
, and 

we set C := K̂νM̂νA(KL + 1)4|ν|(Ĉν)
KL . This completes the proof of the result. �

Finally, and this will be the last ingredient for the proof of Theorem B, we next study the finite 
truncation of the series given in (25). We will show that it can be written in terms of polynomials 
in sp and spω.

Lemma 4.3. Consider i, j ∈ Z and K ∈N and define

T K
ij (s;α) :=

K−1∑
k=0

si+pkTijk(s;α).

Then, setting ω = ω(s; α1), the following holds:

(a) If iq − jp �= 0 then there exists τK
ij (z, w; α) ∈ Q(α1)[z, w, α2, . . . , αN ], with degz,w(τK

ij ) <

K and not having poles in α1 = 0, such that T K
ij (s) = sλj τK

ij (sp, spω; α) − siτK
ij (sp, 0;α).

(b) If (i, j) = r(p, q) with r ∈N then there exists �K
ij (z, w; α) ∈ Q[z, w, α], with degz,w(�K

ij ) <

K + r and �K
ij (z, 0; α) = 0, such that T K

ij (s) = �K
ij (sp, spω; α).
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Proof. By applying (a) in Lemma 2.1, from the definition in (16) we get the existence of a 
polynomial Rj

k (z; α) ∈ Q[z, α] with degz(R
j
k ) � k such that

ψ
j
k (t;α) = R

j
k (�(t;α1);α), where �(t;α) = eα1t−1

α1
.

Accordingly, from the definition in (23) and by performing the coordinate change w = �(t; α1), 
we get

Tijk(s;α) =
− ln s∫
0

e(i−λj)tR
j
k (�(t;α1);α)dt =

ω(s;α1)∫
0

(1 + α1w)
i−λj
α1

−1
R

j
k (w;α)dw, (30)

where we use that �(− ln s; α1) = ω(s; α1) by definition. If i − λj |α1=0 �= 0, which is equivalent 
to pj − qi �= 0, after integrating by parts k times we obtain

Tijk(s;α) = (1 + α1w)
i−λj
α1

i − λj

(
R

j
k (w;α) − ∂wR

j
k (w;α)(1 + α1w)

i − λj + α1

+ ∂2
wR

j
k (w;α)(1 + α1w)2

(i − λj + α1)(i − λj + 2α1)
+ · · · + (−1)k∂k

wR
j
k (w;α)(1 + α1w)k

(i − λj + α1) · · · (i − λj + kα1)

)∣∣∣∣∣
ω(s;α1)

0

.

It is clear then that there exists a polynomial τijk(w; α) ∈ Q(α1)[w, α2, . . . , αN ], not having 
poles along α1 = 0 and with degw(τijk) � k, such that we can write

si+kpTijk(s;α) = si+kp

(
(1 + α1ω)

i−λj
α1 τijk(ω;α) − τijk(0;α)

)

= sλj+kpτijk(ω;α) − τijk(0;α)si+kp,

where we set ω = ω(s; α1) for shortness and in the second equality we use that 1 +α1ω = s−α1 . 
On account of this there exists τ̂ijk(z, w; α) ∈ Q(α1)[z, w, α2, . . . , αN ], which is homogenous of 
degree k in z and w, such that

si+kpTijk(s;α) = sλj τ̂ijk

(
sp, spω;α)− si τ̂ijk(s

p,0;α).

In view of this it is clear that the assertion in (a) follows taking τK
ij :=∑K−1

k=0 τ̂ijk . With regard to 
the one in (b) we note that, since (p, q) = 1, the equality pj − qi = 0 holds if and only if there 
exists r ∈ Z such that (i, j) = r(p, q). In this case, from (30), we deduce that

Tijk(s;α) =
ω(s;α1)∫

0

(1 + α1w)r−1R
j
k (w;α)dw.

If r ∈ N then Tijk(s; α) = �ijk(ω; α) − �ijk(0; α), where �ijk(z; α) ∈ Q[z, α] with degz(�ijk) �
k + r . Hence there exists �̂ijk(z, w; α) ∈ Q[z, w, α], homogeneous of degree k + r in z and w, 
such that
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si+kpTijk(s;α) = sp(r+k)Tijk(s;α) = �̂ijk

(
sp, spω;α)− �̂ijk(s

p,0;α).

Since T K
ij (s; α) =∑K−1

k=0 si+pkTijk(s; α), this shows that (b) follows taking

�K
ij (z,w;α) :=

K−1∑
k=0

(
�ijk(z,w;α) − �ijk(z,0;α)

)
,

which concludes the proof of the result. �

We are now in position to prove our second main result.

Proof of Theorem B. Recall that the family of vector fields under consideration is given by

Yα,β = 1

β0xmyn +∑M+	−1
i=	 βi+1−	 ui

Xα,

where 	 ∈Z is defined in (1), u = xpyq , (p, q) = 1 and

Xα = x∂x + 1
q

(
−p +∑N−1

i=0 αi+1u
i
)

y∂y.

Let the solution of Xα passing through p0 ∈ R2 at t = 0 be t �→ (
x(t, p0; α), y(t, p0;α)

)
. Then, 

if p0 = (s, 1) with s > 0, x(t, p0; α) = set intersects the transversal section {x = 1} at t = − ln s. 
Consequently the time T (s; α, β) that spends the solution of Yα,β starting at (s, 1) with s > 0 to 
reach the transversal section {x = 1} is given by

T (s;α,β) =
− ln s∫
0

(
β0x

myn +
M+	−1∑

i=	

βi+1−	(x
pyq)i

)∣∣∣∣∣
{x=x(t,s,1;α),y=y(t,s,1;α)}

dt

= β0Tmn(s;α) +
M+	−1∑

i=	

βi+1−	Tip,iq(s;α),

where Tij ( · ; α) is the Dulac time of 1
xiyj Xα , which is precisely our concern in Proposition 4.2

and Lemma 4.3. It is clear then that, by applying Proposition 4.2, for each compact set C ⊂ Uδ

with δ ∈ (0, 14 ] there exists s0 > 0 such that

T (s;α,β) =
+∞∑
k=0

skp

(
β0s

mTmnk(s;α) +
M+	−1∑

i=	

βi+1−	s
ipTip,iq,k(s;α)

)

for all s ∈ (0, s0) and α ∈ C and the series is absolutely convergent. Furthermore we can assert 
that, for the given L ∈R, there exists KL ∈ Z≥0 such that
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TL(s;α,β) :=
+∞∑

k=KL

skp

(
β0s

mTmnk(s;α) +
M+	−1∑

i=	

βi+1−	s
ipTip,iq,k(s;α)

)

∈ F∞
L (U0 ×RM+1),

where U0 × RM+1 stands for the set {(α, β) ∈ RM+N+1; α1 = 0}. This assertion follows by 
taking (26) into account and applying, in this order, (c), (b) (g) and (e) in Lemma A.3.

On the other hand, by Lemma 4.3, there exist τ0(z, w; α) ∈ Q(α1)[z, w, α2, . . . , αN ] without 
poles along α1 = 0 and �i(z, w; α) ∈ Q[z, w, α] with �i(z, 0; α) = 0, i = 0, 1, . . . , M , such that 
setting

L0(s;α) :=

⎧⎪⎨
⎪⎩

sλnτ0(s
p, spω;α) − smτ0(s

p,0;α) if mq − np �= 0,

sκp�0(s
p, spω;α) if mq − np = 0 and (m,n) �= (0,0),

− ln s if (m,n) = (0,0),

L1(s;α) :=
{

s	p�1(s
p, spω;α) if 	 > 0,

− ln s if 	 = 0,

and

Li (s;α) :=s(	+i−1)p�i(s
p, spω;α), for i = 2,3, . . . ,M ,

then

T L(s;α,β) :=
KL−1∑
k=0

skp

(
β0s

mTmnk(s;α) +
M+	−1∑

i=	

βi+1−	s
ipTip,iq,k(s;α)

)

=β0L0(s;α) + β1L1(s;α) +
M∑
i=2

βiLi (s;α). (31)

With regard to the cases considered in the definition of L0, let us note that if mq − np = 0
then, due to (p, q) = 1, there exists η ∈ Z such that (m, n) = η(p, q). Thus, by assumption, 
η = κ := ⌈

max
(

m
p
, n

q

)⌉
� 0 and hence, on account of Definition 1, 	 = η + 1 > 0. (In partic-

ular, if mq − np = 0 and (m, n) �= (0, 0) then η = κ ∈ N , and so the assertion with respect 
to L0 follows by (b) in Lemma 4.3.) If, on the contrary, mq − np �= 0 then, by Definition 1
again, 	 = κ � 0. Note also that if (i, j) = (0, 0) then Tij (s; α) = − ln s, which yields to the sub-
cases (m, n) = (0, 0) and 	 = 0 in L0 and L1, respectively. In this respect, L0(s; α) = − ln s in 
case that (m, n) = (0, 0), which implies 	 � 1, and then, L1(s; α) �= − ln s. On the other hand, 
L1(s; α) = − ln s in case that 	 = 0, which implies mq − np �= 0 due to (1) and the assumption 
κ � 0. Accordingly, in this case, L0(s; α) �= − ln s.

Taking the previous considerations into account, the assertions with respect to T L follow 
from (31). This concludes the proof of the result. �
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Appendix A. Results about the class FK
L (W)

The present section is devoted to show a number of general properties about the class FK
L (W). 

We first prove that any g(s; μ) ∈ FK
L (W) extends to a finitely smooth function (on s and the 

parameter μ) along s = 0. (This applies in particular to the remainder DL in Theorem A, as well 
as to TL in Theorem B.) On the contrary, we will provide an example showing that a function 
g(s; μ) verifying the estimates in (4) but only with respect to the s derivative (i.e., with ν1 =
. . . = νN = 0) may not have an extension along s = 0 which is C L on s and the parameter μ (see 
Example A.2).

Lemma A.1. Let U be an open set of RN , K ∈ Z≥0 and g(s; μ) ∈ C K
s>0(U) such that, for some 

W ⊂ U and L ∈ R, g(s; μ) ∈ FK
L (W). If L > K then g extends to a C K -function ĝ, defined in 

some open neighbourhood of {0} × W in RN+1, and satisfying ∂νĝ(0; μ) = 0 for all μ ∈ W and 
ν ∈ ZN+1

≥0 with |ν| � K .

Proof. Due to g(s; μ) ∈ C K
s>0(U), by definition there exists an open neighbourhood V of {0} ×U

in RN+1 such that (s, μ) �→ g(s; μ) is C K on V+ := V ∩ ((0, +∞) × U
)
. Then the function

ĝ(s;μ) :=
{

g(|s|;μ) if s �= 0 and (|s|,μ) ∈ V+,

0 if s = 0 and μ ∈ U ,

is well defined on 
{
(s,μ) ∈RN+1; (|s|,μ) ∈ V+

}∪ ({0} × U
)
, which is an open neighbourhood 

of {0} ×U in RN+1. Moreover, for ν = (ν0, ν1, . . . , νN) ∈ ZN+1
≥0 with |ν| � K , it is easy to show 

(by induction on ν0) that

∂νĝ(s;μ) = sgn(s)ν0∂νg(|s|;μ) for s �= 0 with (|s|,μ) ∈ V+. (32)

Next we fix any μ̂ ∈ W . Then, due to g(s; μ) ∈ FK
L (μ̂), by definition there exist s0, ε, C > 0

such that, for each ν ∈ZN+1
≥0 with |ν| � K ,

∣∣∂νg(s;μ)
∣∣� CsL−ν0 for all s ∈ (0, s0) and ‖μ − μ̂‖ < ε. (33)

We claim that ĝ(s; μ) is of class C K in a neighbourhood of (0, μ̂) and that ∂νĝ(0; μ̂) = 0
for all ν ∈ ZN+1

≥0 with |ν| � K . Since μ̂ is arbitrary and, on account of (32), ĝ is C K on {
(s,μ) ∈ RN+1; (|s|,μ) ∈ V+

}
, the result will follow once we prove the claim. To prove it we 

will show by induction on ν0 that if |ν| � K then |∂νĝ(s; μ)| � C|s|L−ν0 for all (s, μ) with 
s ∈ (−s0, s0) and ‖μ − μ̂‖ < ε. (This will imply that ∂νĝ is continuous and vanishes at any 
(0, μ) with ‖μ − μ̂‖ < ε.) Denote ν̄ = (ν1, ν2, . . . , νN) ∈ ZN

≥0 for shortness so that ν = (ν0, ν̄). 
The base case ν0 = 0 is clear because, taking (32) and ĝ(0; μ) = 0 into account,

∂(0;ν̄)ĝ(s;μ) =
{

∂(0;ν̄)g(|s|;μ) if s �= 0,

0 if s = 0,

that has absolute value smaller than C|s|L if ‖μ − μ̂‖ < ε and s ∈ (−s0, s0) thanks to (33) and 
∂(0;ν̄)ĝ(0; μ) = 0. Let us take next any ν0 � 1 and show the inductive step. Then, by using (32)
and that ∂(ν0−1,ν̄)ĝ(0; μ) = 0 due to the induction hypothesis, we get



D. Marín, J. Villadelprat / J. Differential Equations 269 (2020) 8425–8467 8457

∂νĝ(s;μ) =
⎧⎨
⎩

sgn(s)ν0∂νg(|s|;μ) if s �= 0,

lim
z→0

∂(ν0−1,ν̄)ĝ(z,μ)
z

if s = 0.

Therefore |∂νĝ(s; μ)| = |sgn(s)ν0∂νg(|s|; μ)| � C|s|L−ν0 in case that 0 < |s| < s0, thanks 

to (33), whereas ∂νĝ(0; μ) = 0 because the induction hypothesis implies 
∣∣∣ ∂(ν0−1,ν̄)ĝ(z,μ)

z

∣∣∣ �
C|z|L−ν0+1

|z| = C|z|L−ν0 , which tends to zero as z → 0 due to L > K � |ν| � ν0. Accordingly 

|∂νĝ(s; μ)| � C|s|L−ν0 for all (s, μ) with s ∈ (−s0, s0) and ‖μ − μ̂‖ < ε, and this proves the 
induction step. Consequently the claim is true and the result follows. �

Example A.2. With regard to the previous result we now exhibit a C∞ function g(s; μ) on 
(0, +∞) × R verifying |∂i

sg(s; μ)| � CsL−i for all s > 0, μ ∈ R and i = 0, 1, . . . , L, but such 
that ∂μg(s; μ) does not have a continuous extension along s = 0.

Let us begin by taking a C ∞ bump function ϕ :R −→ [0,+∞) defined by ϕ(x) =
exp(−x2/(x2 − 1)2) if |x| � 1 and zero otherwise. Let us fix besides any α ∈ (0, 1) and de-
fine β = 1+α

2 . Then, for each k ∈Z≥0, define Ek := {(s, μ) ∈ R2; pk(s, μ) � 1} where

pk(s,μ) :=
(

2(s − βαk)

αk(1 − β)

)2

+
( μ

α(L+1)k

)2
.

The sets Ek , k ∈ Z≥0, are pairwise disjoint and, furthermore, every (s, μ) �= (0, 0) has an open 
neighbourhood that intersects at most one Ek. This shows that

g(s;μ) :=
+∞∑
k=0

αLkϕ(pk(s,μ))

is a well defined C ∞ function on R2 \ {(0, 0)}. For the same reason we can commute derivation 
and summation and then, by applying Theorem B.1,

∂n
s g(s;μ) =

+∞∑
k=0

αLk

n∑
j=1

ϕ(j)
(
pk(s;μ)

) ∑
r1,...,rn

n!
n∏

i=1

(
∂i
spk(s,μ)

)ri
ri !(i!)ri , for all (s,μ) �= (0,0),

where the third summation is subject to the coupling conditions 
∑n

i=1 ri = j and 
∑n

i=1 iri = n. 

Observe that ∂i
spk(s, μ) = 2 

(
2(s−βαk)

αk(1−β)

)2−i (
2

αk(1−β)

)i

for i = 1, 2 and zero for i � 3. Thus, if 

(s, μ) ∈ Ek then |∂i
spk(s, μ)| � 2 

(
2

αk(1−β)

)i

for all i ∈ N . Consequently, if (s, μ) ∈ Ek0 and 
n ∈ N then we get

|∂n
s g(s,μ)| � C′αLk0

n∏
i=1

(α−k0)iri = C′αk0(L−n) � Cα(k0+1)(L−n) � CsL−n,

where C′ is a positive constant (depending on n, α and ‖ϕ(j)‖, j = 1, 2, . . . , n), C := C′αn−L

and we use that s ∈ [αk0+1, αk0 ]. The same inequality is valid for n = 0 since |g(s; μ)| � αLk0 =
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α−LαL(k0+1) � α−LsL. Accordingly g verifies the desired bounds with respect to the s deriva-
tives.

The sequence of points (si, μi) := (βαi, 2−1/2αLi) ∈ Ei tends to (0, 0) as i → ∞ and, on the 
other hand, an easy computations gives

|∂μg(si;μi)| = αLi |∂μϕ(pi(si ,μi))| = α−i |ϕ′(1/2)|,

which tends to +∞ as i → ∞. This shows that ∂μg(s; μ) does not have a continuous extension 
at (0, 0). �

Next result gathers some general properties with regard to operations between functions in 
FK

L (W) with K ∈ Z≥0 ∪ {∞} and L ∈R. Let us point out that the inclusions in (b) and (c) must 
be thought with the natural identification of functions on RM to functions on RM ×RM ′

via the 
projection RM ×RM ′ → RM .

Lemma A.3. Let U and U ′ be open sets of RN and RN ′
respectively and consider W ⊂ U and 

W ′ ⊂ U ′. Then the following holds:

(a) FK
L (W) ⊂ FK

L (Ŵ ) for any Ŵ ⊂ W and 
⋂

n FK
L (Wn) = FK

L

(⋃
n Wn

)
.

(b) FK
L (W) ⊂ FK

L (W × W ′).
(c) C K(U) ⊂ C K

s=0(U) ⊂ FK
0 (W).

(d) If K � K ′ and L � L′ then FK
L (W) ⊂ FK ′

L′ (W).
(e) FK

L (W) is closed under addition.

(f ) If f ∈ FK
L (W) and ν ∈ZN+1

≥0 with |ν| � K then ∂νf ∈FK−|ν|
L−ν0

(W).

(g) FK
L (W) ·FK

L′ (W) ⊂ FK
L+L′(W).

(h) Assume that φ : U ′ −→ U is a C K function with φ(W ′) ⊂ W and let us take g ∈ FK
L′ (W ′)

with L′ > 0 and verifying g(s; η) > 0 for all η ∈ W ′ and s > 0 small enough. Consider also 
any f ∈ FK

L (W). Then h(s; η) := f (g(s; η); φ(η)) is a well-defined function that belongs 
to FK

LL′(W ′).

Proof. Let us begin by showing (g) since the previous assertions are straightforward. Take 
f (s; μ) ∈ FK

L (W) and g(s; μ) ∈ FK
L′ (W) and fix μ̂ ∈ W and ν̂ ∈ ZN+1

≥0 with |ν̂| � K . Then, 
by definition, it follows that there exist a neighbourhood V of μ̂ and C, s0 > 0 such that 
|∂νf (s; μ)| � CsL−ν0 and |∂νg(s; μ)| � CsL′−ν0 for all μ ∈ V , s ∈ (0, s0) and ν ∈ ZN+1

≥0 with 
|ν| � |ν̂|. Thus, by applying Leibniz’s rule (see Theorem B.2), if μ ∈ V and s ∈ (0, s0) then

∣∣∣∂ν̂
(
f (s;μ)g(s;μ)

)∣∣∣� ∑
ν1+ν2=ν̂

(
ν̂

ν1, ν2

)
|∂ν1f (s;μ)| |∂ν2g(s;μ)| � ĈsL+L′−ν̂0,

where we use ν10 + ν20 = ν̂0 and set Ĉ := C2∑
ν1+ν2=ν̂

(
ν̂

ν1,ν2

)= C22|ν̂|. Thus fg ∈FK
L+L′(W).

Let us turn next to show the assertion in (h). To this end fix any ν̂ ∈ZN ′+1
≥0 and η̂ ∈ U ′ ⊂ RN ′

. 
Then, by definition, it follows that there exist a neighbourhood V ′ of η̂ and C′, s1 > 0 such that 
|∂νg(s; η)| � C′sL′−ν0 for all η ∈ V ′, s ∈ (0, s1) and ν ∈ZN ′+1

≥0 with |ν| � |ν̂|. On the other hand, 
there exist a neighbourhood V of μ̂ := φ(η̂) ∈ U ⊂ RN and C, s2 > 0 such that |∂νf (s; μ)| �
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CsL−ν0 for all μ ∈ V , s ∈ (0, s2) and ν ∈ ZN+1
≥0 with |ν| � |ν̂|. Consider now a relatively compact 

neighbourhood V ′′ of η̂ with V ′′ ⊂ V ′ and φ(V ′′) ⊂ V . Then, on account of L′ > 0, there exists 
s3 ∈ (0, s1) such that g(s; η) ∈ (0, s2) for all s ∈ (0, s3) and η ∈ V ′′. The application of Faà di 
Bruno formula (see Theorem B.1) to compute the derivative of h(s; η) = f (g(s; η); φ(η)) yields

∂ν̂h(s;η) =

=
∑

1�|λ|�|ν̂|
∂λf (u;μ)

∣∣{u=g(s;η),μ=φ(η)}
∑

p(ν̂,λ)

(ν̂!)
q∏

i=1

Cki	i
(∂	i g(s, η))ki0

N∏
j=1

(∂	i φi(η))kij .

Here we set Cki	i
:= 1

ki !(	i !)|ki | and q := −1 + ∏N ′
i=0(ν̂i + 1) for the sake of shortness. 

Note that the vectors λ, ki ∈ ZN+1
≥0 and 	i ∈ ZN ′+1

≥0 are subject to the coupling conditions ∑q
i=1 ki = λ and 

∑q
i=1 |ki |	i = ν̂. Accordingly if we define C1

k	 := ∏q
i=1 Cki	i

and C2
k	 :=

sup
{∏q

i=1

∏N
j=1 |∂	i φi(η)|kij ; η ∈ V ′′

}
and we take any s ∈ (0, s3) and η ∈ V ′′,

|∂ν̂h(s;η)| �
∑

1�|λ|�|ν̂|
Cg(s;η)L−λ0

∑
p(ν̂,λ)

(ν̂!)C1
k	C

2
k	

q∏
i=1

(C′sL′−	i0)ki0

=
∑

1�|λ|�|ν̂|
Cg(s;η)L−λ0

∑
p(ν̂,λ)

C3
k	s

∑q
i=1(L

′−	i0)ki0

�
∑

1�|λ|�|ν̂|
C(C′sL′

)L−λ0
∑

p(ν̂,λ)

C3
k	s

L′λ0−ν̂0

where we set C3
k	 := (ν̂!)C1

k	C
2
k	

∏q
i=1(C

′)ki0 = (ν̂!)C1
k	C

2
k	(C

′)λ0 and use 
∑q

i=1 ki0	i0 � ν̂0. 
Hence, setting Ĉ :=∑

1�|λ|�|ν̂| C(C′)L−λ0
∑

p(ν̂,λ) C
3
k	, this shows that |∂ν̂h(s; η)| � ĈsLL′−ν̂0

for all s ∈ (0, s3) and η ∈ V ′′, which proves the validity of (h). This completes the proof of the 
result. �

Next result gathers some interesting properties of the Ecalle-Roussarie compensator that will 
be used in this (and a subsequent) paper. In the statement we use the notation x+ := max(x, 0)

and x− := max(−x, 0) for, respectively, the positive and negative part of a given x ∈ R. Note in 
particular that then x = x+ − x− and |x| = x+ + x−.

Lemma A.4. The following assertions hold:

(a) For each compact set I ⊂ R and ν ∈ Z2≥0 there exists a constant C > 0 such that

|∂νω(s;α)| � Cs−α+−ν0 | ln s||ν|+1for all α ∈ I and s ∈ (0,1/e).

Moreover lims→0+ 1
ω(s;α)

= α− uniformly on α ∈ R so that, in particular,

lim(s,α)→(0+,0)
1

ω(s;α)
= 0.

(b) For each ε > 0, (s, α) �→ ω(s; α) belongs to F∞−ε({α < ε}) and (s; α) �→ 1
ω(s;α)

belongs to 
F∞−ε(R).
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(c) For each L ∈ R and 	 ∈ Z, (s, α, β) �→ sβω	(s; α) belongs to F∞
L ({(α, β) ∈ R2 ; β > L +

	+α+}).
(d) If p(z; μ) ∈ C K(U)[z, z−1], where U is some open set of RN , then (s, α, β, μ) �→

sβp(ω(s; α); μ) belongs to FK
L ({(α, β, μ) ∈ R2 × U ; α = 0, β > L}).

Proof. For the sake of convenience we prove first the assertion (c) for 	 = 0. To this end we 
apply Lemma 2.6, which shows that for each i, j ∈ Z≥0 there exists M > 0 so that, for every 
s ∈ (0, 1/e),

|∂i
s∂

j
βsβ | � Msβ−i max(| ln s|, |β|)i+j = MsL−i sβ−L max(| ln s|, |β|)i+j . (34)

Let us fix β̂ ∈ R with β̂ > L and take a compact neighbourhood I of β̂ such that β − L > 0
for all β ∈ I . Thus C := M sup

{
sβ−L max(| ln s|, |β|)i+j ;β ∈ I, s ∈ (0,1/ε)

}
is finite and so, 

from (34), |∂i
s∂

j
βsβ | � CsL−i for all s ∈ (0, 1/e) and β ∈ I . Hence sβ belongs to F∞

L ({β > L}), 
which is a subset of F∞

L ({(α, β) ∈ R2; β > L}) by (b) in Lemma A.3.
We show next the validity of the inequality in (a). Take ν = (ν0, ν1) ∈ Z2≥0 and a compact 

set I of R and let us consider first the case ν0 > 0. Then, if α ∈ I and s ∈ (0, 1/e),

|∂νω(s;α)| = |∂(ν0−1,ν1)s−α−1| � Ms−α−ν0 max(| ln s|, |α + 1|)|ν|−1

� Cs−α−ν0 | ln s||ν|−1 � Cs−α+−ν0 | ln s||ν|+1,

where the first inequality follows from (34) taking i = ν0 − 1, j = ν1 and β = −α − 1, 
and the second one setting C := M max(1, sup{|α + 1|; α ∈ I })|ν|−1 and using previously that 
max(a, b) � a max(1, b) for any a � 1 and b � 0. In order to prove the same inequality for 
ν0 = 0 note that ω(s; α) = F(α ln s) ln s with F(x) := e−x−1

x
and so, in this case, ∂νω(s; α) =

∂
ν1
α (F (α ln s) ln s) = (ln s)ν1+1F (ν1)(α ln s). We claim that

|F (n)(x)| � ex−
for all x ∈R and n ∈ Z≥0.

In this respect observe that, due to x−∣∣
x=α ln s

= max(−α ln s, 0) = − ln s max(α, 0) = ln(s−α+
), 

the claim will imply |∂νω(s; α)| � s−α+| ln s|ν1+1 = s−α+−ν0 | ln s||ν|+1 for all s ∈ (0, 1/e) and 
α ∈ R and, consequently, the validity of the inequality in (a) for ν0 = 0 as well. To prove the 
claim we note that F is an entire function which, differentiating term by term its Taylor’s series 
at x = 0, verifies

F (n)(x) = −
+∞∑
r=n

(−1)n(−x)r−n

(r − n)!(r + 1)
= (−1)n+1

+∞∑
k=0

(−x)k

k!(k + n + 1)
for all x ∈R.

Hence, on account of 1
k+n+1 � 1, we get |F (n)(x)| � e|x| for all x ∈ R. In its turn this implies the 

claim for x � 0 because, in this case, x− = |x|. The proof of the claim for x � 0 is a little more 

involved. We must show that 
∣∣∣∂n

x

(
e−x−1

−x

)∣∣∣� 1 for all x � 0, and it is clear that this will follow 
once we prove that
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0 < ∂n
x

(
ex − 1

x

)
� 1 for all x � 0. (35)

To prove these two inequalities we first check by induction on n ∈Z≥0 that

∂n
x

(
ex − 1

x

)
= exn!

+∞∑
k=0

(−x)k

(k + n + 1)! ,

which is valid for all x ∈ R because x �→ ex−1
x

is an entire function. Hence, for any n ∈ Z≥0, 

we can assert that ∂n
x

(
ex−1

x

)
> 0 for all x � 0. In particular this implies ∂n−1

x

(
ex−1

x

)
�

∂n−1
x

(
ex−1

x

) ∣∣
x=0 = 1

n
� 1 for all x � 0 and n ∈ N . Thus both inequalities in (35) are true and 

so the claim follows for x � 0 as well.
Let us prove now that lims→0+ 1

ω(s;α)
= α− uniformly on α ∈ R. By distinguishing the cases 

α < 0, α = 0 and α > 0, one can check that 1
ω(s;α)

− α− = 1
ω(s;|α|) , which is strictly positive in 

case that s ∈ (0, 1) due to ω(s; α) = ∫ 1
s

x−α−1dx. Accordingly, for each given ε > 0 we must 
find s0 ∈ (0, 1) small enough such that if s ∈ (0, s0) then

∣∣∣∣ 1

ω(s;α)
− α−

∣∣∣∣= 1

ω(s; |α|) < ε for all α ∈ R. (36)

If α �= 0 then 1
ω(s;|α|) = |α|

s−|α|−1
. So, in this case, the above inequality holds if and only if s <

(1 + |α|/ε)−1/|α|. In this regard note that, for every ε > 0 and α ∈ R,

e− 1
ε = lim

α→0

(
1 + |α|

ε

)− 1
|α|

�
(

1 + |α|
ε

)− 1
|α|

because the function x �→ (
1 + x

ε

)−1/x is increasing on (0, +∞) for every ε > 0. Hence this 
shows that, for α �= 0, the inequality in (36) follows taking s0 = e−1/ε . This is also true for α = 0
because in this case the inequality in (36) simply writes as − 1

ln s
< ε. Thus lims→0+ 1

ω(s;α)
= α−

uniformly on α ∈ R, as desired.
We turn next to the proof of the two assertions in (b). To show the first one we consider the 

given ε > 0 and any α̂ < ε, and we take a compact neighbourhood I of α̂ such that α < ε for all 
α ∈ I . Then, by applying (a), for each ν ∈Z2≥0 there exists C > 0 such that

|∂νω(s;α)| � Cs−ε−ν0sε−α+| ln s||ν|+1 for all α ∈ I and s ∈ (0,1/e).

Thus, since α+ < ε if and only if α < ε, taking Ĉ := C sup{sε−α+| ln s||ν|+1; s ∈ (0, 1/e), α ∈ I }, 
from the previous estimate we get |∂νω(s; α)| � Ĉs−ε−ν0 for all s ∈ (0, 1/e) and α ∈ I . This 
proves that ω(s; α) ∈ F∞−ε({α < ε}), as desired. Let us prove next that 1

ω(s;α)
∈ F∞−ε(R) for all 

ε > 0. So consider any α̂ ∈ R and take a compact neighbourhood I of α̂. Theorem B.1 shows 
that, for any ν ∈ Z2≥0 with |ν| � 1,
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∂ν

(
1

ω(s;α)

)
=

|ν|∑
n=1

(−1)nn!(ω(s;α))−1−n
∑

p(ν,n)

ν!
q∏

i=1

Cki	i
(∂	i ω(s;α))ki ,

with Cki	i
= 1

ki !(	i )
|ki | and q = (ν0 + 1)(ν1 + 1) − 1, and where the second summation is 

multidimensional and subject to the coupling conditions 
∑q

i=1 ki = n and 
∑q

i=1 	iki = ν. On 
account of this and the inequality in (a) there exists C′ > 0 such that 

∏q

i=1 |∂	i ω(s; α)|ki �
C′s−nα+−ν0 | ln s|n+|ν| for all α ∈ I and s ∈ (0, 1/ε). Consequently, taking s−α+ = max(1, s−α) =
max(1, 1 + αω(s; α)) also into account, we can assert that there exist suitable positive constants 
C′′ and C such that if s ∈ (0, 1/e) and α ∈ I then

∣∣∣∣∂ν

(
1

ω(s;α)

)∣∣∣∣� C′′s−ε−ν0

|ν|∑
n=1

max(1,1 + αω(s;α))n

ω(s;α)n+1 sε| ln s|n+|ν| � Cs−ε−ν0 ,

where in the second inequality we also use that, by applying (a), lims→0+ 1
ω(s;α)

= α− uniformly 

on α ∈ R. Observe that, by the same reason, lims→0+ sε

ω(s;α)
= 0 uniformly for α ∈ I , which 

implies that the above inequality holds for |ν| = 0 as well. This proves that the function 1
ω(s;α)

belongs to F∞−ε(R) for any ε > 0.
With regard to the assertion in (c) recall that the case 	 = 0 is already proved. Here, for the 

sake of shortness in the exposition, we shall use the Heaviside step function H(	), which is 
defined by H(	) = 0 if 	 < 0 and H(	) = 1 if 	 > 0. By applying (b) together with Lemma A.3, 
and distinguishing the cases 	 < 0 and 	 > 0, it can be easily checked that

ω	(s;α) ∈F∞−|	|ε
({α ∈R;H(	)α < ε})⊂ F∞−|	|ε

({(α,β) ∈R2;H(	)α < ε,β > L}).
Similarly, but applying (c) with 	 = 0, we get

sβ ∈ F∞
L

({β > L})⊂ F∞
L

({(α,β) ∈R2;H(	)α < ε,β > L}).
Consequently, by (g) in Lemma A.3,

sβω	(s;α) ∈ F∞
L−|	|ε

({(α,β) ∈R2;H(	)α < ε,β > L}) for all L ∈ R and ε > 0.

Hence sβω	(s; α) ∈ F∞
L

({(α, β) ∈ R2; H(	)α < ε, β > L +|	|ε}) for all L ∈R and ε > 0. Thus, 
by (a) in Lemma A.3, the function (s, α, β) �→ sβω	(s; α) belongs to

⋂
ε>0

F∞
L

({(α,β) ∈ R2;H(	)α < ε,β > L + |	|ε})

= F∞
L

(⋃
ε>0

{
(α,β) ∈R2;H(	)α < ε,β > L + |	|ε

})

= F∞
L

({(α,β) ∈ R2;β > L + 	+α+}),



D. Marín, J. Villadelprat / J. Differential Equations 269 (2020) 8425–8467 8463

where once again the second equality follows by distinguishing the cases 	 > 0 and 	 < 0. This 
proves assertion (c) for 	 �= 0. Finally assertion (d) follows by applying (c) in the present result 
and, in this order, (c), (b), (g) and (e) in Lemma A.3. This concludes the proof of the result. �

Next we introduce the set of functions IK(W) that we previously used in [8,9,11,12] to de-
scribe the properties of the remainder TL of the Dulac time. In this respect let us quote that 
Mourtada uses essentially the same definition in his study of the cyclicity of the hyperbolic poly-
cycles (see for instance [13]). This set of functions is not used in the present paper and our aim 
is only to relate it with the set FL

K(W) for completeness and reader’s convenience.

Definition A.5. Consider K ∈ Z≥0 ∪ {+∞} and an open subset U of RN . Let D := s∂s be the 
Euler operator and consider some μ̂ ∈ U . We say that ψ(s; μ) ∈ C K

s>0(U) belongs to the class 
IK(μ̂) if for each k = 0, 1, . . . , K there exists a neighbourhood V of μ̂ such that

lim
s→0+ Dkψ(s;μ) = 0 uniformly on μ ∈ V .

If W is a (not necessarily open) subset of U then we define IK(W) =⋂
μ̂∈W IK(μ̂). �

The following result shows that the remainder DL in Theorem A and TL in Theorem B can 
be written in terms of the class Ik(W), which is more suitable in order to perform the derivation-
division algorithm.

Lemma A.6. Let U be an open set of RN , W ⊂ U , L ∈ R, K ∈ Z≥0 ∪ {+∞} and ε > 0. Then 
the inclusion FK

L+ε(W) ⊂ sLIK(W) holds.

Proof. Clearly it suffices to show that FK
L+ε(μ̂) ⊂ sLIK(μ̂) for any μ̂ ∈ W because then, by 

definition,

FK
L+ε(W) =

⋂
μ̂∈W

FK
L+ε(μ̂) ⊂

⋂
μ̂∈W

sLIK(μ̂) ⊂ sL
⋂

μ̂∈W

IK(μ̂) = sLIK(W).

So fix μ̂ ∈ W and let us show that FK
L+ε(μ̂) ⊂ sLIK(μ̂). To this end we note that one can easily 

verify by induction that for all k ∈ Z≥0 there exist ηik ∈ Z≥0, i = 0, 1, . . . , k, such that the 
identity

Dkg(s;μ) =
k∑

i=0

ηiks
i∂i

sg(s;μ)

holds for any C k-function g. On the other hand, if ψ ∈ FK
L+ε(μ̂) then for each i = 0, 1, . . . , K

there exist a neighbourhood Vi of μ̂ and Ci, si > 0 such that |∂i
sψ(s; μ)| � Cis

L+ε−i for 
all s ∈ (0, si) and μ ∈ Vi . Thus, setting V̄k := ∩k

i=0Vi , ŝk := min(si; i = 0, . . . , k) and Ĉk :=∑k
i=0 ηikCi , by applying the above identity we get that if k = 0, 1, . . . , K then
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|Dkψ(s;μ)| �
k∑

i=0

ηiks
i |∂i

sψ(s;μ)| �
(

k∑
i=0

ηikCi

)
sL+ε

= Ĉks
L+ε for all s ∈ (0, ŝk) and μ ∈ V̄k .

Taking this into account, since

D i
(
s−Lψ(s;μ)

)
=

i∑
k=0

(
i

k

)
D i−k(s−L)Dkψ(s;μ) =

i∑
k=0

(
i

k

)
(−L)i−ks−LDkψ(s;μ),

we can assert that

∣∣∣D i
(
s−Lψ(s;μ)

)∣∣∣� i∑
k=0

(
i

k

)
|L|i−kĈks

ε = C̃is
ε for all s ∈ (0, s̃i ) and μ ∈ Ṽi ,

where Ṽi := ∩i
k=0V̄k , s̃i := min(ŝk; k = 0, . . . , i) and C̃i := ∑i

k=0

(
i
k

)|L|i−kĈk . It is clear that 
the above upper bound implies that lims→0+ D i

(
s−Lψ(s;μ)

) = 0 uniformly on μ ∈ Ṽi for 
i = 0, 1, . . . , K , which implies s−Lψ(s; μ) ∈ IK(μ̂), as desired. This proves the validity of the 
result. �

Corollary A.7. For each 	 ∈Z, (s, α, β) �→ sβω	(s; α) belongs to sLI∞
({(α, β) ∈ R2; β > L +

	+α+}) for all L ∈R.

Proof. The result follows by noting that

sβω	(s;α) ∈
⋂
ε>0

F∞
L+ε

({(α,β) ∈R2;β > L + ε + 	+α+})

⊂
⋂
ε>0

sLI∞
({(α,β) ∈R2;β > L + ε + 	+α+})

= sLI∞

(⋃
ε>0

{
(α,β) ∈ R2;β > L + ε + 	+α+})

= sLI∞
({(α,β) ∈ R2;β > L + 	+α+}),

where we apply firstly Lemma A.4 and secondly Lemma A.6. �

Appendix B. Differentiation formulas and integration of series

In this section, for reader’s convenience, we state some specific results from analysis and 
calculus that we use all along. To begin with, since we use several times the multivariate 
Faa di Bruno formula to calculate the derivative of a composition of functions, we provide 
its explicit expression according to [3, Theorem 2.1]. To this end some notation is needed. If 
ν = (ν1, . . . , νd) ∈ Zd

≥0 and x = (x1, . . . , xd) ∈ Rd then we define
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|ν| =
d∑

i=1

νi, ν! =
d∏

i=1

(νi !), ∂ν
x = ∂ |ν|

∂
ν1
x1 · · · ∂νd

xd

and xν =
d∏

i=1

x
νi

i .

Moreover, if � = (	1, . . . , 	d) ∈ Zd
≥0, we write � � ν provided 	i � νi for i = 1, . . . , d . Let 

f (y1, . . . , ym) and g(1)(x1, . . . , xd), . . . , g(m)(x1, . . . , xd) be real-valued functions and set

h(x1, . . . , xd) = f
(
g(1)(x1, . . . , xd), . . . , g(m)(x1, . . . , xd)

)
.

Theorem B.1 (Multivariate Faa di Bruno formula). Let ν = (ν1, . . . , νd) ∈ Zd
≥0 with |ν| > 0

and x0 ∈ Rd be given. Suppose that all the partial derivatives ∂�
x with � � ν of g1, . . . , gm exist 

and are continuous in a neighbourhood of x0. Assume moreover that all the partial deriva-
tives ∂λ

y f (y), with λ ∈ Zm
≥0 and |λ| � |ν|, exist and are continuous in a neighbourhood of (

g1(x0), . . . , gm(x0)
) ∈ Rm. Then ∂ν

x h(x) exits in a neighbourhood of x0 and it is given by

hν(x) =
∑

1�|λ|�|ν|
fλ(g(x))

∑
p(ν,λ)

(ν!)
q∏

i=1

(g�i
(x))ki

(ki !)(�i !)|ki | ,

where

p(ν,λ) =
{

(k1, . . . ,kq;�1, . . . ,�q) :
q∑

i=1

ki = λ and
q∑

i=1

|ki |�i = ν

}
. (37)

In the statement �1, . . . , �q ∈ Zd
≥0 is a complete listing of all vectors � � ν with |�| > 0, 

k1, . . . , kq ∈Zm
≥0 and q = −1 +∏d

i=1(νi + 1). We also set hν(x) = ∂ν
x h(x), fλ(y) = ∂λ

y f (y) and 

g�(x) =
(
g

(1)
� (x), . . . , g

(m)
� (x)

)
where g(i)

� (x) = ∂�
xg(i)(x).

We will also appeal to the following Leibniz formula for the partial derivatives of a product 
of functions (see for instance [2, Theorem C, p. 132]).

Theorem B.2. If f1, . . . , fr ∈ C ∞(U) for some open subset U of Rd and ν ∈ Zd
≥0 then

∂ν
r∏

i=1

fi =
∑

�1+...+�r=ν

(
ν

�1, . . . ,�r

) r∏
i=1

∂�i fi ,

where �1, . . . , �r ∈Zd
≥0 and 

( ν
�1,...,�r

) := ν!
�1!···�r ! =

d∏
i=1

νi !
	1i !···	ri ! .

Remark B.3. The generalized multinomial coefficients
( ν
�1,...,�r

)
satisfy

r |ν| =
d∏

i=1

⎛
⎝ r∑

j=1

1

⎞
⎠

νi

=
d∏

i=1

⎛
⎝ ∑

�1+...+�r=ν

νi !
	1i ! · · ·	ri !

⎞
⎠
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=
∑

�1+...+�r=ν

d∏
i=1

νi !
	1i ! · · ·	ri ! =

∑
�1+...+�r=ν

(
ν

�1, . . . ,�r

)

thanks to the multinomial identity (see [2, Theorem B, p. 28])

(
m∑

i=1

xi

)n

=
∑ n!

a1! · · ·am!x
a1
1 · · ·xam

m ,

where the summation takes place over all (a1, . . . , am) ∈ Zm
≥0 such that a1 + . . . + am = n. �

The following result is also well-known (see [17, Theorem 7.17] for instance).

Lemma B.4. Suppose that {fn} is a sequence of functions, differentiable on [a, b] and such that 
{fn(x0)} converges for some point x0 ∈ [a, b]. If {f ′

n} converges uniformly on [a, b], then {fn}
converges uniformly on [a, b] to a function f such that

f ′(x) = lim
n→∞f ′

n(x) for all x ∈ [a, b].

Lemma B.5. Let E be a measurable set of R and consider a sequence of measurable functions 
{fn}n∈N . If 

∑
n�1

∫
E

|fn(x)|dx < +∞ then 
∫
E

∑
n�1 fn(x)dx =∑

n�1

∫
E

fn(x)dx.

Proof. The problem is to show that

lim
k→+∞

∫
E

ψk(x)dx =
∫
E

lim
k→+∞ψk(x)dx, where ψk(x) :=

k∑
n=1

fn(x) for each k ∈N ,

and this follows by the Lebesgue’s dominated convergence theorem (see [17, Theorem 11.32]) 
because

|ψk(x)| �
k∑

n=1

|fn(x)| �
+∞∑
n=1

|fn(x)| =: �(x) for all k ∈N

and, on the other hand, 
∫
E

�(x)dx < +∞ by hypothesis. In this regard let us remark that, due 
to |fn| � 0 for all n ∈N , the equality 

∑
n�1

∫
E

|fn(x)|dx = ∫
E

∑
n�1 |fn(x)|dx holds (see [17, 

Theorem 11.30]). �
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