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a b s t r a c t 

We provide conditions to guarantee the occurrence of Shilnikov bifurcations in analytic 

unfoldings of some Hopf-Zero singularities through a beyond all order phenomenon: the 

exponentially small breakdown of invariant manifolds which coincide at any order of the 

normal form procedure. The conditions are computable and satisfied by generic singulari- 

ties and generic unfoldings. 

The existence of Shilnikov bifurcations in the C r case was already argued by Gucken- 

heimer in the 80’s. About the same time, endowing the space of C ∞ unfoldings with a 

convenient topology, persistence and density of the Shilnikov phenomenon was proved by 

Broer and Vegter in 1984. However, since the proof involves the use of flat perturbations, 

this approach is not valid in the analytic context. What is more, none of the mentioned 

approaches provides a computable criteria to decide whether a given unfolding exhibits 

Shilnikov bifurcations or not. 

Many people appeals to the appearance of Hopf-Zero singularities to explain the emer- 

gence of chaos in a huge number of applications. However, no one can refer to a specific 

theorem establishing the conditions that a given unfolding should satisfy to ensure that 

chaotic dynamics are exhibited. We fill this gap by providing an ultimate result about the 

appearance of Shilnikov bifurcations in analytic unfoldings of a certain class of Hopf-Zero 

singularities. These conditions are computable and satisfied by generic families. One of 

these conditions depends on the full jet of the singularity and comes from a beyond all 

order phenomenon. It can be related with Stokes constants. The other conditions only de- 

pend on the 2-jet of the family. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Results guaranteeing the existence of chaotic dynamics are hardly available in the literature. Although there is a plenty 

of examples based on numerical evidences, analytical proofs are rare. It is only recently that simple criteria are available for 

certain sets of dynamical systems as, for instance, unfoldings of singularities of vector fields; the general framework of this 

paper. 

The route through dynamical complexity starts with Poincaré. In his seminal essay [33] , he discovered that homoclinic 

intersections between the invariant manifolds of a hyperbolic fixed point were sources of very complicated behaviours. 

Later [7] , Birkhoff showed that, for planar diffeomorphisms, near a transverse homoclinic intersection there exists an ex- 

tremely intricate set of periodic orbits. By the mid 60 ′ s, Smale [38] conceived his celebrated horseshoe to explain, via 
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conjugations to Bernoulli shifts, the Birkhoff result and also additional features of the complicated dynamics arising near 

a homoclinic intersection. Mora and Viana [31] proved the appearance of strange attractors when tangent homoclinic inter- 

sections were unfolded in families of planar diffeomorphisms. These attractors are like those in [6] for the Hénon family, 

that is, they are non hyperbolic and persistent in the sense of measure. 

On the other hand, Shilnikov [36] proved the counterpart of the Birkhoff results in the context of smooth vector fields 

on R 

3 . Namely, he proved the existence of a countable set of periodic orbits in every neighbourhood of a homoclinic orbit 

to a hyperbolic equilibrium point with eigenvalues λ and −� ± ωi, with 0 < ϱ< λ. Because of the resemblance with the 

analogous statement for transverse homoclinic points in diffeomorphisms, one would expect to find the Smale horseshoes 

playing a key role. And so it was that Tresser [40] showed that in every neighbourhood of a Shilnikov homoclinic orbit, an 

infinite number of linked horseshoes can be defined in such a way that the dynamics is conjugated to a subshift of finite 

type on an infinite number of symbols. Moreover, when the homoclinic connection is generically unfolded, disappearance of 

horseshoes is accompanied by unfoldings of homoclinic tangencies to periodic orbits, leading to persistent non hyperbolic 

strange attractors like those in [31] . In [25,34,35] , it was proven that infinitely many of these attractors can coexist for non 

generic families of vector fields. For an extensive study of the phenomena accompanying homoclinic bifurcations see [8,32] . 

Shilnikov homoclinic orbits are the simplest global configurations which, as just argued, can explain the existence of chaotic 

dynamics in families of vector fields, but, unfortunately, their existence is again not easy to prove in a given system. 

Finally, in this searching of friendly criteria, we come into the world of singularities. They are, needless to say, man- 

ageable objects, much more manageable than global structures such as homoclinic intersections. It has been proven that 

Shilnikov saddle-focus homoclinic orbits appear in generic smooth unfoldings of certain singularities. Indeed, in [26] it was 

proven that these configurations were unfolded in generic unfoldings of three-dimensional nilpotent singularities of codi- 

mension four. Degeneracy was reduced in [27] , where Shilnikov homoclinic bifurcations were proven to exist in any generic 

unfolding of a three-dimensional nilpotent singularity of codimension three. Therefore, suspended Hénon like strange attrac- 

tors, appear in generic unfoldings of such singularities. See [5] for additional technical details and [18,19] for complementary 

results regarding the rich unfolding of the three-dimensional nilpotent singularity. In higher dimensions there also exists sin- 

gularities of low codimension which can play the role of organizing centers of chaotic dynamics. For instance, [16] provides 

numerical evidences of the existence of strange attractors in the unfolding of the codimension-three Hopf-Bogdanov-Takens 

bifurcation. This bifurcation has also been studied in the context of Hamiltonian systems (see [28] ). 

One of the main motivations for obtaining simple criteria for the existence of strange attractors in given families of 

vector fields is their applicability. Results in [27] have been successfully used to prove the existence of chaotic dynamics in 

a model of coupled oscillators [17] , in a general class of delay differential equations [13] and also in a three-dimensional 

predator-prey model [15] . 

Once it has been proven that chaos is unfolded by low codimension singularities, a natural question arises: which is 

the lowest codimension level where there exist singularities unfolding strange attractors or, in other words, what is the 

simplest local bifurcation displaying strange attractors. Obviously, one is not such lowest codimension because the only 

codimension one bifurcations are the saddle-node bifurcation of equilibrium points and the Hopf bifurcation, none of them 

including chaos. So, if strange attractors are unfolded from codimension three singularities, the question is: do there exist 

codimension-two local bifurcations unfolding generically strange attractors? 

In this paper we consider Hopf-Zero ( HZ in the sequel) singularities, that is, three-dimensional vector fields X 

∗ such that 

X ∗(0 , 0 , 0) = 0 and DX 

∗(0, 0, 0) has eigenvalues ± i α∗ and 0, with α∗ > 0. In fact, without loss of generality, we can assume 

that: 

DX 

∗(0 , 0 , 0) = 

( 

0 α∗ 0 

−α∗ 0 0 

0 0 0 

) 

. (1) 

Classification of HZ singularities was first done by Takens [39] . Up to an analytic local change of coordinates the 2-jet of 

a HZ singularity becomes: { 

x ′ = y − axz 
y ′ = −x − ayz 

z ′ = cz 2 + b(x 2 + y 2 ) . 
(2) 

At the 1-jet level we need to impose two degeneracy condition which, joined to the open conditions a b c � = 0, define a 

stratum of codimension two in the space of germs of singularities of vector fields on R 

3 . Because c � = 0, we can assume that 

this coefficient has been normalized by means of an appropriate scaling of coordinates. Takens proved that there are six 

topological types, see Fig. 1 , but we are only interested in one of them, that type characterized by the conditions 

a > 0 , b > 0 . (3) 

HZ singularities satisfying (3) are denoted by HZ ∗ in the sequel. 

Generic unfoldings of HZ singularities of codimension two were first studied by Guckenheimer [23] and Gavrilov [22] . The 

reader can find the bifurcation diagrams of suitable truncated normal forms for each of the six topological types in [24,29] . 
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Fig. 1. Different topological types of Hopf-Zero singularities depending on a and b . 

Truncating at second order, any generic unfolding is written as: { 

x ′ = y + νx − axz 
y ′ = −x + νy − ayz 

z ′ = −μ + z 2 + b(x 2 + y 2 ) 
(4) 

being μ, ν the parameters of the unfolding, or, in cylindrical coordinates, as { 

r ′ = νr − arz 

z ′ = −μ + z 2 + br 2 

θ ′ = −1 . 

(5) 

The characterization of HZ ∗ singularities by means of their normal form does not allow to detect if a given vector field 

belongs to HZ ∗ without performing changes of variables to reduce it to its normal form. For that reason, in Lemma 2.1 , we 

prove that the intrinsic conditions: [
∂ 2 

z 2 
π z X 

∗ ·
(
∂ 2 

x 2 
π z X 

∗ + ∂ 2 
y 2 
π z X 

∗)](0 ) > 0 , 
[
∂ 2 

z 2 
π z X 

∗ ·
(
∂ 2 x,z π

x X 

∗ + ∂ 2 y,z π
y X 

∗)](0 ) < 0 , (6) 

where ( π x , π y , π z ) denote the ( x, y, z ) components of the vector field X 

∗, define the vector fields X 

∗ ∈ HZ ∗ in terms of the 

2-jet of X 

∗. Furthermore, we prove that any unfolding X μ, ν satisfying the generic condition: [ (
∂ 2 x,νπ

x X 0 , 0 + ∂ y,νπ
y X 0 , 0 

)
∂ μπ z X 0 , 0 −

(
∂ 2 x,μπ x X 0 , 0 + ∂ y,μπ y X 0 , 0 

)
∂ νπ

z X 0 , 0 

] 
(0 ) � = 0 (7) 

has (4) as truncated normal form of order two. 

When ν = 0 , family (5) has a first integral 

H(r, z) = r 
2 
a 

(
−μ + z 2 + 

b 

1 + a 
r 2 
)

. 

Regarding the case of HZ ∗ singularities, it easily follows from the existence of H that, when μ> 0, the two-dimensional 

invariant manifolds of the equilibrium points p ± = (±√ 

μ, 0 , 0) form an invariant globe and, moreover, the branches of the 

one-dimensional invariant manifolds contained inside the globe are also coincident (see Fig. 2 ). 
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Fig. 2. Sketch of the invariant globe in the phase portrait of (4) when ν = 0 . There are two saddle-focus points p + and p − such that dim (W 

u (p + )) = 

dim (W 

s (p −)) = 1 and dim (W 

s (p + )) = dim (W 

u (p −)) = 2 . One of the branches of W 

u (p + ) \ { p + } coincides with one of the branches of W 

s (p −) \ { p −} . 
Moreover W 

u (p −) \ { p −} = W 

s (p + ) \ { p + } . 

Adding higher order terms, these invariant structures can be destroyed (even if the rotationally symmetry is preserved). 

One can guess that the splitting of the invariant manifolds could lead to saddle-focus homoclinic connections. The com- 

plexity to decide if such invariant manifolds whether split or not, strongly depends on the regularity of the considered 

unfoldings, being the analytic case (the one considered in this paper) the more intricate one. 

Simple geometrical arguments were supplied in [23,24] to support the possibility of the existence of Shilnikov homoclinic 

bifurcations in C k unfoldings of HZ ∗ singularities. For the specific case of families X + εY, where X is the normal form (4) and 

ε > 0 is a perturbation parameter, Gaspard [21] proves the occurrence of Shilnikov homoclinic bifurcations near the codi- 

mension two point. The tricky point here is that the generic unfoldings of a HZ ∗ singularity can not be written in the form 

X + εY (see also [14] ). 

The question is considered with a different perspective by Broer and Vegter in [12] . They prove that for any generic 

C ∞ unfolding of a HZ ∗ singularity there exists a C ∞ flat perturbation providing a family exhibiting Shilnikov homoclinic 

bifurcations. Moreover, abundance of unfoldings displaying the Shilnikov scenario is discussed, but using suitable topologies. 

Because of the “flat” nature of the techniques, the remarkable results in [12] neither include any usable criterio for the 

existence of Shilnikov homoclinic bifurcations in a given unfolding of HZ ∗ singularities nor can be applied to analytic families 

unfolding these singularities. Therefore the analytic case remains open since [12] . As it is made clear in that paper, Shilnikov 

phenomenon is beyond all orders. The results in [12] were extended to time reversible unfoldings in [30] . In this paper 

we end with the whole discussion by showing that under generic hypotheses, any analytic unfolding of a HZ ∗ singularity 

contains Shilnikov homoclinic orbits. 

General unfoldings of the HZ ∗ singularity were considered in [20] . As argued there, introducing a scaling parameter 

ε = 

√ 

μ and scaling variables and time, one obtains either a singular perturbation problem with a pure rotation when ε = 0 

or a family with rotation speed tending to ∞ as ε → 0. In any of the two approaches there is no clear limit for the invariant 

manifolds of the two equilibrium points corresponding to the poles of the invariant globe already discussed for (5) . Nev- 

ertheless, one can apply the results in [9,10] to prove that, when the scaling parameter tends to 0, the invariant manifolds 

have a limit position, given by the invariant manifolds of the equilibrium points at the 2-jet level, at least when one con- 

siders restrictions to z ≥ 0 or z ≤ 0. Therefore, for any generic unfolding of the HZ ∗ singularity, splitting distance functions 

are well defined for both the one-dimensional and the two-dimensional invariant manifolds. Using conjectured formulas for 

the splitting functions and some extra conditions, existence of Shilnikov homoclinic bifurcation points is proven for general 

unfoldings. 

On the other hand, in [1–3] explicit formulas for the splitting functions are obtained. The splitting function for the one- 

dimensional invariant manifolds was achieved in [1] . It follows that the distance between the one-dimensional invariant 

manifolds is exponentially small with respect to ε. Moreover the coefficient in front of the dominant term depends on 

the full jet of the singularity. The splitting function for the two-dimensional invariant manifolds was derived in [2,3] . The 

mean free terms in the asymptotic formula are exponentially small with respect to ε and, again, constants involved in the 

expression for those terms, which now depend on an angular variable, depend on the full jet of the singularity. Because 

constants involved in the dominant terms depend on the full jet of the singularity, their computation can only be done 

by means of numerical techniques (see [20] for several examples). In any case, such constants are the essential pieces to 

establish general criteria for the existence of Shilnikov homoclinic orbits. Namely, depending on the accuracy of the result 

one deals with, one needs to assume that either one or two of these constants do not vanish. 

The point is that, putting together [1–3,20] as well as additional results, we are able to provide general results for the 

existence of Shilnikov homoclinic bifurcations in generic analytic unfoldings of the HZ ∗ singularity. 
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Fig. 3. Wedge-shaped domains W 2 ⊂ W 1 and the curve �0 . W 1 corresponds to the union of dark and light grey regions. The discontinuous lines in W 2 are 

two curves �ρ . 

At this point it should be noticed that HZ singularities can be considered in two different contexts. At the 1-jet level any 

HZ singularity has divergence zero (note that the trace of (1) is zero). If one restricts to the set of volume-preserving systems, 

HZ singularities are of codimension one, that is, they occur generically in one parameter families of volume preserving 

vector fields. In such a case we should consider ν = 0 in (2) and (5) and refer to unfoldings X μ. We will require in this case, 

replacing (7) the generic condition: 

∂ μπ z X 0 (0 , 0 , 0) � = 0 . (8) 

In the general context, as already explained, HZ singularities have codimension two, that is, they arise generically in two 

parameter families X μ, ν of vector fields. Note that according to [11] , when working with families of vector fields with diver- 

gence zero, the change of coordinates to reduce to normal form may be chosen volume preserving. 

Now we are able to provide a qualitative version of our main results. Later, after introducing some technical details in 

Section 2 , we will give a more formal statement. We separate the results in the general case, Theorem 1.1 and the volume 

preserving setting, Theorem 1.2 . 

Theorem 1.1 (General case) . Let X 

∗ be a HZ singularity satisfying the open conditions in (6) , the additional open condition ∣∣(∂ 2 x,z π
x X 

∗ + ∂ 2 y,z π
y X 

∗)(0 ) 
∣∣ < 2 

∣∣∂ 2 z 2 π
z X 

∗(0 ) 
∣∣, (9) 

and some generic conditions (that will be given explicitly in Theorem 2.7 ). Assume that X μ, ν is any analytic unfolding satisfying 

the generic condition (7) . 

Then, in the ( μ, ν) plane, there exists an analytic curve �0 = { (μ, ν) : ν = ν0 (μ) } , with ν0 (0) = 0 , and domains W 2 ⊂ W 1 

contained in a wedge-shaped neighbourhood of �0 of a width that is exponentially small in 
√ 

μ (see Fig. 3 ) such that: 

1. There exists an immersed curve  ⊂ W 1 (maybe with more than one component) such that the vector field X μ, ν has a 

Shilnikov homoclinic orbit, for ( μ, ν) ∈ . 

2. For (μ, ν) ∈ W 2 , the vector field X μ, ν has, at least, two heteroclinic orbits, formed by the intersection between the two- 

dimensional invariant manifolds of the equilibrium points. 

3. There exists an open neighbourhood of the origin J ⊂ R 

3 such that W 2 = 

⋃ 

ρ∈J �ρ, where for any ρ ∈ J , �ρ = { (μ, ν) : 

ν = νρ(μ) } is a curve exponentially close to �0 . In addition, for any ρ ∈ J each curve �ρ possesses a sequence ( μn , 

νρ ( μn )) → 0 as n → ∞ such that each vector field X μn ,νρ (μn ) has a Shilnikov homoclinic orbit. 

Theorem 1.2 (Volume preserving) . Let X 

∗ be a HZ singularity satisfying the open conditions in (6) and some generic conditions 

(that will be given explicitly in Theorem 2.6 ). 

In the volume preserving case, any divergence free generic unfolding X μ satisfying the generic condition (8) has the following 

properties: 

1. For μ small enough, the vector field X μ has, at least, two heteroclinic orbits, formed by the intersection between the two- 

dimensional invariant manifolds of the equilibrium points. 

2. There exists a sequence of parameter values { μn } with μn → 0 as n → ∞ such that the vector fields X μn have a Shilnikov 

homoclinic orbit. 

Remark 1.3. The generic conditions on the singularity X 

∗ in Theorems 1.1 and 1.2 depend on the full jet of the singularity. 

In fact they involve that some Stokes constants have to be different from zero. 

Remark 1.4. The additional open condition (9) is not necessary to prove the existence of homoclinic orbits to saddle-focus 

equilibrium points, but it appears in the main Theorem 1.1 to get the expansivity condition which is required to have 

Shilnikov homoclinic orbits. Namely, denoting the eigenvalues at the saddle-focus as −� ± ωi and λ, with ϱ> 0 and λ> 0, 

the expansivity condition is λ> ϱ (see [36,37] ). If (9) holds, the eigenvalues at p + satisfy such condition for ν and μ small 

enough. At p − the expansivity condition is satisfied for the backward flow. 
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Remark 1.5. It should be noticed that the occurrence of chaotic dynamics is also expectable in the unfolding of certain 

codimension-two Hopf-Hopf singularities, that is, singularities with two pairs of pure imaginary eigenvalues without reso- 

nances. The classification was obtained in [39] and, together with the study of truncated unfoldings, it can be found in [24] . 

Similarly to the case of the Hopf-Zero singularities, the truncation of the normal form leads to planar reductions exhibiting, 

under appropriate assumptions, heteroclinic cycles involving equilibrium points and, bearing in mind the four-dimensional 

system, periodic orbits. The treatment required to get results of existence of homoclinic orbits is likely to be not far from 

the techniques described and used in this paper, where we deal with the Hopf-Zero case. 

In Section 2 , to understand the role of all the open conditions stated in Theorems 1.1 and 1.2 , we explain the derivation 

of the normal form of the unfoldings of a HZ singularity up to second order. Using such normal form, after appropriate 

scalings, we will write our unfoldings in the form to be used in the rest of the paper. We will discuss the existence of 

equilibrium points, their invariant manifolds and their possible intersections. At the end of Section 2 we will give a more 

quantitative version of our main theorems also split into two results, Theorem 2.6 in the general case and Theorem 2.7 in 

the volume preserving case. Proofs are given in Section 3 . 

2. Preliminaries and a more quantitative result 

This section is mainly devoted to recall some previous results about the dynamics of the unfoldings X μ, ν as well as to 

write a more quantitative version of Theorems 1.1 and 1.2 . In addition, we also prove Lemma 2.1 which gives the correspon- 

dence between the intrinsic conditions on X 

∗ and X μ, ν stated in Theorems 1.1 and 1.2 and the truncated normal form (4) . 

In the sequel, we will deal with both cases (the volume preserving and the general case) at the same time because the 

volume preserving case is contained in the general one by putting ν = 0 and assuming that tr DX μ, 0 (0 , 0 , 0) = 0 . 

2.1. Normal form and previous results 

Even if the proof of the result below ( Lemma 2.1 ) is elementary following the procedure indicated for instance 

in [23,24,39] , we will include it in Appendix A , in order to follow the relation between the original vector field and the 

corresponding normal form. 

Lemma 2.1. Let X 

∗ be a HZ singularity satisfying the open condition (6) . Assume the generic condition (7) on the unfolding X μ, ν

in the general case and (8) in the volume preserving case. 

Then there exists a real analytic change of variables and parameters such that the unfolding X μ, ν is given by { 

x ′ = y + νx − axz + f (x, y, z, ν, μ) 
y ′ = −x + νy − ayz + g(x, y, z, ν, μ) 
z ′ = −μ + z 2 + b(x 2 + y 2 ) + h (x, y, z, ν, μ) 

(10) 

where a, b > 0, the functions f, g, h are real analytic and O(‖ (x, y, z, ν, μ) ‖ 3 ) . In addition, if X 

∗ also satisfies (9) , then 0 < a < 2 . 

We also introduce the new parameters ε, σ as: 

(μ, ν) = (ε 2 , εσ ) , ε > 0 

and the blow up 

x = ε ̄x , y = ε ̄y , z = ε ̄z . 

Then, System (10) becomes (dropping bars of the notation): 

dx 

dt 
= εx (σ x − az) + y + ε −1 f (εx, εy, εz, ε 2 , εσ ) 

dy 

dt 
= −x + εy (σ − az) + ε −1 g(εx, εy, εz, ε 2 , εσ ) 

dz 

d t 
= −ε + εz 2 + εb(x 2 + y 2 ) + ε −1 h (εx, εy, εz, ε 2 , εσ ) . (11) 

Scaling time, s = εt we obtain the vector field below, that we will call, abusing notation, X ε, σ in the general case and X ε in 

the volume preserving case ( σ = 0 ): 

dx 

ds 
= x (σ − az) + 

y 

ε 
+ ε −2 f (ε x, ε y, ε z, ε 2 , ε σ ) 

dy 

ds 
= − x 

ε 
+ y (σ − az) + ε −2 g(ε x, ε y, ε z, ε 2 , ε σ ) 

dz 

ds 
= −1 + z 2 + b(x 2 + y 2 ) + ε −2 h (ε x, ε y, ε z, ε 2 , ε σ ) . (12) 

From now on we will work with the generic unfoldings already in the form (12) . 
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Fig. 4. On the left, the splitting of the one dimensional heteroclinic connection W 

1 . On the right, the corresponding breakdown of the two dimensional 

heteroclinic connection. 

Remark 2.2. Families (11) and (12) were also used in [1–3,20] . Note that for family (11) , the limit when ε → 0 is merely 

a rotation around the vertical axis. On the contrary, in the case of (12) there is no regular limit when ε → 0 because the 

rotation speed tends to ∞ . 

We will state and prove the quantitative version of Theorems 1.1 and 1.2 in terms of System (12) . For that reason, the 

first result we use is the following lemma, whose proof can be found in [4] , which assures the existence of saddle-focus 

equilibrium points: 

Lemma 2.3. Consider System (12) with b > 0, a > 0 and | σ | < a. There exists ε0 > 0 such that, for 0 < ε < ε0 , the vector field has 

two equilibrium points p ± (depending on ε) of saddle-focus type such that p + ( p −) has a one-dimensional unstable (stable) 

manifold and a two-dimensional stable (unstable) one. 

Observe that, when f = g = h = 0 in (12) , the points p ± are (0, 0, ± 1) and they are connected by the heteroclinic orbit: 

W 1 = { x = y = 0 , | z| < 1 } (13) 

which consists on a branch of the 1-dimensional unstable manifold of p + = (0 , 0 , 1) that coincides with a branch of the 

1-dimensional stable manifold of p − = (0 , 0 , −1) . 

However, one expects that for generic f, g, h , the one dimensional heteroclinic connection (13) breaks. Next theorem, 

which corresponds to Theorem 1 in [1] just adapting the notation, gives the distance S 1 ( σ , ε) between the 1-dimensional 

invariant manifolds of p + and p − of System (12) , which is different from zero under generic conditions on the singularity 

X 

∗, see Fig. 4 . 

Theorem 2.4 [See [1] ] . Consider System (12) with a, b > 0 and | σ | < a. Then there exist ε0 > 0 and a real constant C ∗, such 

that, for 0 < ε ≤ ε0 , the distance S 1 ( ε, σ ) between the one-dimensional stable manifold of p − and the one-dimensional unstable 

manifold of p + when they meet the plane z = 0 is given by 

S 1 (ε, σ ) = ε −1+ a e −
π
2 ε e −

πc 0 
2 

(
C ∗ + O(| log ε| −1 ) 

)
with c 0 = lim z→ 0 z 

−3 h (0 , 0 , z, 0 , 0) . 

The constant C ∗ depends on the full jet of the singularity X 

∗ and is different from zero for generic singularities. 

The study of the 2-dimensional invariant manifolds of the equilibrium points p ± of System (12) is more involved, 

see [2,3] for a detailed study of the relative position of these manifolds. We give some details below. 

When f = g = h = 0 and σ = 0 one can see that the 2-dimensional manifolds coincide forming an ellipsoid given by: 

z 2 + 

b 

a + 1 

(x 2 + y 2 ) = 1 , (14) 

but in the general case ( σ � = 0) it is possible that the 2-dimensional unstable manifold of p − and the 2-dimensional stable 

manifold of p + do not intersect. Indeed, when the parameter σ is not of order ε, the position of the 2-dimensional manifolds 

is already known; they do not intersect and the distance between them is of order σ . This fact is easily obtained by doing 

another step of the normal form procedure to System (12) and studying the position of these manifolds in the normal form 

of order three. Moreover, in this case, the existence of Shilnikov homoclinic bifurcations is not possible. Indeed, when the 

2-dimensional invariant manifolds do not intersect, there exist either forward or backward trapping regions which prevent 

the existence of homoclinic connections (see details in [20] ). 



8 I. Baldomá, S. Ibáñez and T.M. Seara / Commun Nonlinear Sci Numer Simulat 84 (2020) 105162 

For this reason, from now on, we restrict our parameters and we will take σ = O(ε) . The result that we will use in our 

case is already done in [3] (and also in [2] ). In that work, symplectic polar coordinates were considered: 

x = 

√ 

2 r cos θ, y = 

√ 

2 r sin θ, 

and it was proven that the 2-dimensional invariant manifolds of p ± can be parameterized by θ and z = tanh (au ) as 

r = r u , s (u, θ ) = 

a + 1 

2 b cosh 

2 
(au ) 

+ r u , s 
1 

(u, θ ) , r u , s 
1 

(u, θ ) = O(ε) , u ∈ [ −T , T ] . 

In particular, the intersections of the two dimensional invariant manifolds of p ± with the plane z = 0 are two closed curves 

C 

u,s that can be parameterized as: 

C 

u , s = { (x, y, 0) , x = 

√ 

2 r u , s (0 , θ ) cos θ, y = 

√ 

2 r u , s (0 , θ ) sin θ, θ ∈ T } . (15) 

Let us call 

S̄ 2 (θ, ε, σ ) = r u (0 , θ ) − r s (0 , θ ) , (16) 

the radial symplectic distance between the manifolds when they meet the plane z = 0 , see Fig. 4 . From Theorem 2.16 of Bal- 

domá et al. [3] one has: 

Theorem 2.5 [See [3] ] . Consider the radial symplectic distance S̄ 2 (θ, ε, σ ) defined in (16) . There exist ε0 > 0, σ 0 > 0 and a 

complex constant C ∗
1 

+ i C ∗
2 
, such that for | σ | ≤σ 0 ε and 0 < ε ≤ ε0 , one has 

S̄ 2 (θ, ε, σ ) = ϒ [0] (1 + O(ε)) + ε −2 − 2 
a e −

π
2 aε 

[
C ∗1 cos (θ − a −1 L 0 log ε) + C ∗2 sin (θ − a −1 L 0 log ε) + O(| log ε| −1 ) 

]
where L 0 is a constant depending on the terms of degree three of the singularity X 

∗ (see Remark 5.17 in [2] for details) and 

ϒ [0] = ϒ [0] (ε, σ ) = σ I + εJ + O 2 (ε, σ ) 

with I � = 0 and J computable constants (for details, see formulas (90) and (91) in [2] ). 

In addition, there exists a curve 

�∗
0 = { (ε, σ ) , σ = σ ∗

0 (ε) = − J 

I 
ε + O(ε 2 ) } 

such that for all 0 ≤ ε ≤ ε0 one has: 

ϒ [0] = ϒ [0] (ε, σ ∗
0 (ε)) = 0 . 

Moreover, given any constants c 1 , c 2 and c 3 > 0, there exists a curve 

�∗
ρ = { (ε, σ ) , σ = σ ∗

ρ (ε) = σ ∗
0 (ε) + O(ε c 2 e −

c 3 π

2 aε ) } 
with ρ = (c 1 , c 2 , c 3 ) , such that for all 0 ≤ ε ≤ ε0 one has: 

ϒ [0] = ϒ [0] (ε, σ ∗
ρ (ε)) = c 1 ε 

c 2 e −
c 3 π

2 aε . 

In the volume preserving case ϒ [0] = 0 . 

In addition, the constant C ∗
1 

+ i C ∗
2 

� = 0 for generic singularities X 

∗ and depends on the full jet of X 

∗. 

2.2. More quantitative results 

We emphasize that, since the unfoldings are analytic, the distance between the invariant manifolds is exponentially small 

for adequate values of the parameters. This fact is intrinsic to the analytic case and lies in the field of singular perturbation 

theory. Conversely, when we are in the finitely many differentiable case, the classical perturbation theory can be applied to 

compute the distances S 1 and S̄ 2 . They both will be, generically, O(ε k ) for some k > 0, for values of σ in an adequate curve. 

Using the notation we have already introduced, we can write a the announced quantitative version of Theorem 1.1 for 

the general case: 

Theorem 2.6 [General case] . Consider System (12) and assume the open conditions 0 < a < 2 and b > 0 and the generic condition 

C ∗ � = 0 , where C ∗ is given in Theorem 2.4 , on the initial singularity X 

∗. 

• In the ( ε, σ ) plane, with ε small enough, there exists an immerse curve ∗, which lies in a wedge-shaped neighbourhood 

W 

∗
1 

of the curve �∗
0 

given in Theorem 2.5 of a width that is at most 2 c 1 ε 
−2 − 2 

a e −
π

2 aε , with either c 1 = 

√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 if 

C ∗1 + i C ∗2 � = 0 or c 1 > 0 if C ∗1 + i C ∗2 = 0 , such that for ( ε, σ ) ∈ ∗, any analytic unfolding X ε, σ has a Shilnikov homoclinic orbit 

to the equilibrium point p + . 
• Assume moreover the generic condition on the singularity X 

∗: C ∗
1 

� = 0 or C ∗
2 

� = 0 . Let 0 < κ < 1 be any constant. Take any curve 

�∗
ρ, ρ = (c 1 , c 2 , c 3 ) as given in Theorem 2.5 with 

| c 1 | ≤ κ
√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 , c 2 ≥ −2 − 2 

a 
, c 3 ≥ 1 

and ε small enough. Let W 

∗
2 = 

⋃ 

ρ

�∗
ρ . Then 
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1. For any (ε, σ ) ∈ W 

∗
2 there are, at least, two heteroclinic orbits from p − to p + . 

2. For any curve �∗
ρ ⊂ W 

∗
2 , there exists a sequence of parameter values { ε n }, with ε n → 0 as n → ∞ and (ε n , σ ∗

ρ (ε n )) ∈ W 

∗
2 , 

such that the vector field X ε n ,σ ∗
ρ (ε n ) has a Shilnikov homoclinic orbit to the equilibrium point p + . 

The precise results in the volume preserving case are collected in the following result: 

Theorem 2.7 [Volume preserving case] . Consider System (12) and assume that it is volume preserving. In particular, a = 1 and 

ν = 0 . Assume moreover the open condition b > 0 and the generic conditions C ∗ � = 0 , (C ∗
1 
) 2 + (C ∗

2 
) 2 � = 0 on the initial singularity 

X 

∗. 

1. Then, for ε small enough there are, at least, two heteroclinic orbits from p − to p + . 
2. There exists a sequence of parameter values { εn }, with εn > 0 and εn → 0 as n → ∞ such that the vector field X ε n has a 

Shilnikov homoclinic orbit to the equilibrium point p + . 

Observe that Theorems 1.1 and 1.2 are just a corollary of Theorems 2.6 and 2.7 undoing the changes of variables from 

System (12) to System (10) . 

Remark 2.8. Recall that 0 < a < 2 is equivalent to (9) . As we pointed out in Remark 1.4 , to prove the existence of homoclinic 

orbits to saddle-focus equilibrium points we only need to assume a > 0. However, the condition 0 < a < 2 is necessary to 

guarantee that such homoclinic orbits are of Shilnikov type. 

3. Proof of Theorems 2.6 and 2.7 

The proof of these two theorems will have some common setting: to prove the existence of homoclinic orbits to the 

north point p + we need to control its global 1-dimensional unstable manifold W 

u (p + ) and more concretely its intersections 

with the plane { z = 0 } . 
Theorem 2.4 gives us information about the “first” intersection of W 

u (p + ) with the plane { z = 0 } and the distance S 1 ( ε, 

σ ), between W 

u (p + ) and the 1-dimensional stable manifold of the south point p −; W 

s (p −) (see Fig. 4 ). Using the precise 

results in Theorems 2.4 and 2.5 we will prove that W 

u (p + ) intersects again the plane z = 0 in a point Q 0 which is “close 

enough” to the 2-dimensional manifold W 

u (p −) . The goal is to get a sharp bound for the distance between Q 0 and the curve 

C 

u = W 

u (p −) ∩ { z = 0 } (see Fig. 5 ). 

We rewrite the curve C 

u,s (in (15) ) in polar (non symplectic) coordinates as: 

C 

u , s = { (x, y, 0) , x = r̄ u , s (θ, ε, σ ) cos θ, y = r̄ u , s (θ, ε, σ ) sin θ, θ ∈ T } . (17) 

Here we have written the dependence on the parameters ε, σ and we will do this whenever it is convenient. 

More explicitly, we will prove the following key result: 

Proposition 3.1. Consider System (12) . Then, the unstable invariant manifold, W 

u (p + ) , crosses the plane z = 0 at least twice. 

Let us call q 0 and Q 0 the first and the second intersection points, ϕ( t ; q ) the flow and τ > 0 such that Q 0 = ϕ(τ ; q 0 ) . Consider 

the C ∞ function ϑ( t ) giving the argument of ϕ( t ; q 0 ) . We denote by θ0 (ε, σ ) = ϑ(τ ) and by r 0 ( ε, σ ) the radius of Q 0 . Then we 

have: 

1. The radial distance between Q 0 and the unstable curve C 

u given in (17) is bounded from above by 

0 < r 0 (ε, σ ) − r̄ u (θ0 (ε, σ ) , ε, σ ) ≤ C 1 ε 
2 − 2 

a e −
π
aε , 

for some constant C 1 > 0 . 

Fig. 5. The points q 0 and Q 0 correspond to the first and second intersections of W 

u (p + ) with z = 0 . The curve C u is given by the first intersection of 

W 

u (p −) with z = 0 . We need to get appropriate bounds for the angle θ0 = ϑ(t) and for the distance between Q 0 and C u . On the left the three dimensional 

figure, on the right the plane { z = 0 } . 
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Fig. 6. On the left, the parameters (ε, σ ) ∈ �∗
+ and C u is outside of C s . On the right, the parameters belongs to �∗

− and C u is inside of C s . In both cases 

there are no intersections. 

2. There exists a constant d > 0 such that θ0 (ε, σ ) ≥ d 
ε 2 

. 

The arguments to check the existence of Q 0 and to get the estimation of the distance complete the results in [20] , where 

the required quantitative estimates were not proven. The proof of Proposition 3.1 is deferred to Section 3.2 . 

3.1. Proof of the existence of heteroclinic and homoclinic connections 

In order to prove that System (12) undergoes a Shilnikov bifurcation (first item in Theorem 2.6 ) we are going to use a 

classical argument, similar to the one used in [20] (see also [12] ) to obtain the curve ∗. But since we are in the analytic 

context, we have to use the accurate information we have proven about the splitting between the stable and unstable 

manifolds of p ± and about the distance between Q 0 and the unstable manifold of p −. 

Denote by �∗± the curves �∗
ρ given in Theorem 2.5 , with ρ± = (±c 1 , c 2 , c 3 ) corresponding to the constants: c 2 = −2 − 2 

a , 

c 3 = 1 and c 1 = 2 
√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 when C ∗

1 
+ i C ∗

2 
� = 0 and c 1 > 0 if C ∗

1 
+ i C ∗

2 
= 0 . 

When the parameters are in these curves, by Theorem 2.5 , the two dimensional stable and unstable manifolds do not 

intersect. Moreover, we know that when (ε, σ ) ∈ �∗+ the curve C 

u is outside C 

s and the contrary in �∗−, and the distance 

between these curves is of order O(c 1 ε 
−2 − 2 

a e −
π

2 aε ), see Fig. 6 . 

We introduce the radial distance between the 2-dimensional invariant manifolds denoted by S 2 ( θ , ε, σ ( ε)). It is related 

with the symplectic radial distance by (see (15) and (16) ): 

S 2 (θ, ε, σ (ε)) = 

√ 

b 

a + 1 

S̄ 2 (θ, ε, σ (ε))(1 + O(ε)) . 

Fix 0 < ε < ε0 and consider σ ∈ [ σ ∗
ρ− (ε) , σ ∗

ρ+ (ε)] . By Proposition 3.1 the radial distance between Q 0 and C 

u is less than the 

radial distance S 2 between C 

u and C 

s . Therefore we can ensure that when σ = σ ∗
ρ− (ε) the point Q 0 is inside C 

s , and for 

σ = σ ∗
ρ+ (ε) the point Q 0 is outside C 

s , therefore, we know that it exists at least one value σ = σ s (ε) ∈ [ σ ∗
ρ− (ε) , σ ∗

ρ+ (ε)] 

where Q 0 ∈ C 

s and, consequently, W 

u (p + ) ⊂ W 

s (p + ) giving rise to a homoclinic orbit to p + . 

Remark 3.2. The previous argumentation resembles the proof of the existence of Shilnikov homoclinic orbits argued 

in [20] based in the notion of trapping region. However, using our results we have a sharp accurate domain on the pa- 

rameters where the Shilnikov homoclinic orbits take place. 

This reasoning gives the existence of a homoclinic orbit to the point p + and therefore the existence of, at least, one 

homoclinic bifurcation for any 0 < ε < ε0 . Then the existence of the curve ∗ in the parameter plane where System (12) has 

Shilnikov bifurcations. Note that 

∗ ⊂ W 

∗
1 = { (ε, σ ) : σ ∗

ρ− (ε) < σ < σ ∗
ρ+ (ε) } 

With respect to the heteroclinic connections, by Theorem 2.5 , there is a heteroclinic connection if and only if the sym- 

plectic distance S̄ 2 (θ, ε, σ ) = 0 for some θ . In the general case, let θ ∗ be the argument of C ∗
1 

+ i C ∗
2 
, take any constant κ ∈ (0, 

1) and choose | c 1 | ≤ κ
√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 , c 2 = −2 − 2 

a and c 3 = 1 . Notice that with this choice of ρ = (c 1 , c 2 , c 3 ) , the curve 
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�∗
ρ ⊂ W 

∗
2 . Therefore, if (ε, σ ) ∈ �∗

ρ, we need θ satisfying 

cos 
(
θ∗ − θ + a −1 L 0 log ε 

)
= − c 1 √ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 

(1 + O(ε)) + O(| log ε| −1 ) . 

Obviously, this equation has two solutions when ε is small enough provided | c 1 | ≤ κ
√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 with 0 < κ < 1. Analo- 

gously we prove the first item in Theorem 2.7 . 

Now we prove the rest of the items in Theorems 2.6 and 2.7 . In the volume preserving case, take σ ≡ 0. In the general 

case, as for the heteroclinic orbits, take any curve �∗
ρ ⊂ W 

∗
2 

defined in Theorem 2.6 . Let Q 0 be the second crossing with 

{ z = 0 } defined in Proposition 3.1 . The polar coordinates of Q 0 are r 0 ( ε, σ ), θ0 ( ε, σ ) being θ0 a C ∞ function for ε > 0 small 

enough. Then Q 0 belongs to C 

s , and therefore there is a Shilnikov orbit at the curve σ = σ ∗
ρ (ε) , if and only if the function 

defined by 

H(ε) = r 0 (ε, σ ∗
ρ (ε)) − r̄ u (θ0 (ε, σ ∗

ρ (ε)) , ε, σ ∗
ρ (ε)) + S 2 (θ0 (ε, σ ∗

ρ (ε)) , ε, σ ∗
ρ (ε)) 

is zero for some values of ε. 

Let θ ∗
1 (ε) = θ∗ − a −1 L 0 log ε and θ ∗

2 (ε) = θ∗ − π − a −1 L 0 log ε, where, as before, θ ∗ is the argument of C ∗1 + i C ∗2 . We have 

that: 

S 2 (θ ∗
1 (ε ) , ε , σ

∗
ρ (ε )) = 

√ 

b 

a + 1 

ε −2 − 2 
a e −

π
2 aε 

(
c 1 + 

√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 + O(| log ε| −1 ) 

)
S 2 (θ ∗

2 (ε ) , ε , σ
∗
ρ (ε )) = 

√ 

b 

a + 1 

ε −2 − 2 
a e −

π
2 aε 

(
c 1 −

√ 

(C ∗
1 
) 2 + (C ∗

2 
) 2 + O(| log ε| −1 ) 

)
and it is clear that 

S 2 (θ ∗
1 (ε ) , ε , σ

∗
ρ (ε )) > 0 , S 2 (θ ∗

2 (ε ) , ε , σ
∗
ρ (ε )) < 0 . (18) 

By the second item of Proposition 3.1 , for any n ∈ N , there exists ε 1 n , ε 
2 
n → 0 as n → ∞ satisfying 

θ0 (ε, σ ∗
ρ (ε)) = θ ∗

1 (ε) + 2 πn, θ0 (ε, σ ∗
ρ (ε)) = θ ∗

2 (ε) + 2 πn. 

Using (18) and the first item in Proposition 3.1 , 

H(ε 1 n ) > 0 , H(ε 2 n ) < 0 . 

Therefore we conclude that there exists ε n ∈ ε 1 n ε 
2 
n εn → 0 as n → ∞ satisfying that H(ε n ) = 0 and the proof is complete. 

Condition 0 < a < 2 ensures that the homoclinic orbit is of Shilnikov type. 

Remark 3.3. Our meticulous argumentation is close to the qualitative and geometrical approaches used in [20] and, in some 

sense, in [12] . 

3.2. Proof of Proposition 3.1 

As Theorem 2.4 proves that the 1-dimensional unstable manifold of the north pole, W 

u (p −) , intersects z = 0 very close 

to the 1-dimensional stable manifold of the south pole W 

s (p + ) , the first step is to study the solutions of System (12) near 

W 

s (p −) in z ≤ 0. More concretely, we want to see that orbits entering the plane z = 0 near the 1-dimensional stable manifold 

W 

s (p −) , leave the plane again near the 2-dimensional unstable manifold W 

u (p −) . This is done in Section 3.2.1 . After that, 

in Sections 3.2.2 and 3.2.3 we indeed prove the results in Proposition 3.1 . 

3.2.1. Transition through z ≤ 0 

In order to control the behavior of the solutions which enter z ≤ 0 near the 1-dimensional stable manifold W 

s (p −) , in 

particular W 

u (p + ) , we perform an analytic change of coordinates such that the point p − becomes (0 , 0 , −1) and its stable 

manifold W 

s (p −) becomes the z -axis. As this change does not affect the terms in normal form, we obtain the following 

system, that we write keeping the notation ( x, y, z ): 

dx 

dt 
= x ( σ − az ) + 

y 

ε 
+ ε ̃  f (x, y, z, ε, σ ) , 

dy 

dt 
= − x 

ε 
+ y ( σ − az ) + ε ̃  g (x, y, z, ε, σ ) , 

dz 

d t 
= −1 + b(x 2 + y 2 ) + z 2 + ε ̃ h (x, y, z, ε, σ ) , (19) 

where ˜ f (x, y, z, ε, σ ) , ̃  g (x, y, z, ε, σ ) = O(‖ (x, y ) ‖ ) and the function 

˜ h satisfies ˜ h (x, y, z, ε, σ ) = O(‖ (x, y, z + 1) ‖ ) . To finish we 

perform a suitable linear change of variables, O(ε 2 ) close to the identity, explained with detail in [2, Lemma 4.1] , to put ˜ h 

of the form 

˜ h (x, y, z, ε, σ ) = (z + 1) ̃ h 1 (x, y, z, ε, σ ) + ̃

 h 2 (x, y, z, ε, σ ) , 
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with 

˜ h 2 (x, y, z, ε, σ ) = O(‖ x, y, z + 1 ‖ 2 ) and 

˜ h 1 bounded. In addition, the corresponding ˜ f , ˜ g keep the same properties. 

From the results in [10] and [2, Proposition 4.4] , we easily deduce that 

W 

u (p −) ∩ { z ≤ 0 } = 

{
b 

a + 1 

(x 2 + y 2 ) + z 2 = 1 + ε(1 − z 2 ) ψ(z, θ ) 

}
, (20) 

where ψ( z, θ ) is an analytic periodic function in θ satisfying that there exists a constant M > 0 such that for z ≤ 0, θ ∈ [0, 

2 π ): 

| ψ(θ, z) | ≤ M, 

∣∣∣∣∂ψ 

∂z 
(θ, z) 

∣∣∣∣ ≤ M, 

∣∣∣∣∂ψ 

∂θ
(θ, z) 

∣∣∣∣ ≤ εM. 

That is, the 2-dimensional unstable manifold of the point p − = (0 , 0 , −1) in the domain z ≤ 0 is ε-close to the ellipsoid (14) . 

Lemma 3.4. Let D = D be the closed region D ⊂ { (x, y, z) ∈ R 

3 : z ≤ 0 } with boundaries: 

∂D = { z = 0 } ∪ W 

u (p −) . 

Take ζ 1 ( t ), ζ 2 ( t ) two solutions of System (19) such that 

ζ1 (0) , ζ2 (0) ∈ ∂D 0 := { z = 0 } ∩ 

{ 
b(x 2 + y 2 ) ≤ 1 

2 

} 
. 

Then, there exist τ , C > 0 such that ζ 1 ( t ), ζ 2 ( t ) ∈ D for all t ∈ [0, τ ] and 

‖ ζ1 (t) − ζ2 (t) ‖ ≤ ‖ ζ1 (0) − ζ2 (0) ‖ e C t , t ∈ [0 , τ ] . 

Proof. First we note that ∂ D 0 ⊂ ∂ D ∩ { z = 0 } , because the maximum radius in ∂D is 

√ 

a +1 
b 

+ O(ε) which is greater than √ 

1 
2 b 

the maximum radius in ∂D 0 . The fact that τ > 0 is a direct consequence from the fact that, on ∂D 0 , if ε is small 

enough, we have that ˙ z < − 1 
2 + O(ε) < 0 and therefore the solutions ζ 1 ( t ) and ζ 2 ( t ) enter in int D . 

We consider now �ζ = ζ1 − ζ2 . As both are solutions of System (19) which is an analytical vector field, and we know 

that ζ 1 ( t ), ζ 2 ( t ) ∈ D for 0 ≤ t ≤ τ and D is a bounded region, it is clear, by the mean value Theorem, that �ζ is a solution of 

the homogeneous linear equation 

d�ζ

dt 
= A �ζ + A (t)�ζ , max 

t∈ [0 ,τ ] 
‖A (t) ‖ ≤ K, 

being A the matrix 

A = 

( 

σ + a 1 
ε 0 

− 1 
ε σ + a 0 

0 0 0 

) 

. 

Then, since, ‖ e At ‖ ≤ e (a + σ ) t , where ‖ · ‖ is the euclidian norm, we have that 

‖ �ζ (t)e −(a + σ ) t ‖ ≤ ‖ �ζ (0) ‖ + K 

∫ t 

0 

e −(a + σ ) s ‖ �ζ (s ) ‖ ds 

and by Gronwall’s lemma one deduces 

‖ �ζ (t)e −(σ+ a ) t ‖ ≤ ‖ �ζ (0) ‖ e Kt 

which gives the result taking C = K + σ + a . �

Next two lemmas are devoted to show how the flow of (19) behaves on suitable surfaces. 

Lemma 3.5. For any R 0 > 0, there exists ε0 > 0 small enough such that for any ε ∈ (0, ε0 ), | σ | ≤σ 0 ε (see Theorem 2.5 ) and 

0 < R ≤ R 0 if one considers the cylinder 

C R = { x 2 + y 2 = R 

2 , −1 ≤ z ≤ −ε | log ε |} . 
the flow of System (19) is pointing outwards the side boundary of C R . 

Proof. The normal vector to ∂C R is ( x, y , 0). Therefore we need to check that x ̇ x + y ̇ y > 0 for ( x, y, z ) ∈ ∂C R : 

x ̇ x + y ̇ y = (σ − az) R 

2 + εO(R 

2 ) ≥ aε R 

2 (| log ε | + O(1))) > 0 

if ε is small enough. �

Lemma 3.6. Take ν1 > 0 and the ellipsoid 

S ν1 
= 

{
z 2 + 

b 

a + 1 

(x 2 + y 2 ) = 1 − ν1 

}
. 
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Then there exists ε0 > 0 small enough such that for any ε ∈ (0, ε0 ), | σ | ≤σ 0 ε the surface defined by S ν1 
∩ {−1 ≤ z ≤ −ε | log ε |} 

is contained in the region D defined in Lemma 3.4 and the flow of System (19) points outwards. 

Proof. As the unstable manifold of p −, W 

u (p −) , is ε-close to the ellipsoid (14) (see (20) ) in the region z ≤ 0 and ν1 is small 

but independent of ε, it is clear that if ε is small enough S ν1 
∩ {−1 ≤ z ≤ −ε| log ε|} is contained in the region D . Moreover: 

z ̇ z + 

b 

a + 1 

(x ̇ x + y ̇ y ) = z(−1 + z 2 + b(x 2 + y 2 ) + εO(‖ x, y, z + 1 ‖ )) 

+ 

b 

a + 1 

(x 2 + y 2 )(σ − az + O(ε)) 

= z(a − ν1 (a + 1) − az 2 + εO(‖ x, y, z + 1 ‖ )) 

+ (1 − ν1 − z 2 )(−az + O(ε)) 

= − ν1 z + O(ε) ≥ ε(ν1 | log ε| + O(1)) > 0 

if ε is small enough. �

Recall that in the coordinates which give System (19) , the “north” equilibrium point is of the form p + = (0 , 0 , 1) + O(ε) . 

3.2.2. Proof of second item in Proposition 3.1 

By Theorem 2.4 we know that the points 

ζ u = W 

u (p + ) ∩ { z = 0 } , ζ s = W 

s (p −) ∩ { z = 0 } , 
satisfy that, for some constant C̄ ∗, 

‖ ζ u − ζ s ‖ = ε (−1+ a ) e −
π
2 ε ( ̄C ∗ + O(ε)) . (21) 

Let us consider ζ u ( t ) and ζ s ( t ) the solutions of System (19) such that ζu , s (0) = ζ u , s . It is clear that, ζ s is defined for all t ≥ 0 

and lim t→ + ∞ 

ζs (t) = p − = (0 , 0 , −1) , therefore it belongs to the domain D defined in Lemma 3.4 . In fact ζs (t) ∈ { x = y = 0 } 
for all t ≥ 0. Let τ > 0, given by this lemma, be such that ζ u ( t ) ∈ D for t ∈ [0, τ ]. Then, applying Lemma 3.4 , there exist a 

positive constant C , such that, for 0 ≤ t ≤ τ : 

‖ ζu (t) − ζs (t) ‖ ≤ C̄ ∗
ε 1 −a 

e −
π
2 ε e C t . (22) 

As ζs (t) → p − = (0 , 0 , −1) as t → + ∞ , one concludes that, in order to leave the domain D, τ has to satisfy 

1 

ε 1 −a 
e −

π
2 ε e Cτ = O(1) 

and therefore, we can assure that, at least 

τ ≥ π

4 Cε 
. (23) 

Observe that the lower bound for τ is not sharp but it will be enough for our purposes. 

Now we prove that, indeed, ζ u ( t ) leaves the domain D , that is, it crosses the plane { z = 0 } for some t ≥ τ . With this result 

we prove the second item in Proposition 3.1 . We proceed by assuming the contrary, that is, that ζ u ( t ) ∈ int D for all t > 0. We 

do the proof in three steps: 

Step 1 : Preliminary considerations 

Take ν1 > 0 and consider the closed region V ν1 
with boundary 

∂V ν1 
= W 

u (p −) ∪ { z = −ε | log ε |} ∪ S ν1 

where the ellipsoid S ν1 
is defined in Lemma 3.6 . Recall that, as it is indicated in (20) , up to order ε the unstable manifold 

W 

u (p −) is well approximated by the ellipsoid 

z 2 + 

b 

a + 1 

(x 2 + y 2 ) = 1 . 

Consequently, the region V ν1 
is O(ε) close to the region 

{ z ≤ −ε | log ε |} ⋂ 

{ 

−
√ 

1 − b 

a + 1 

(x 2 + y 2 ) ≤ z ≤ −
√ 

1 − ν1 − b 

a + 1 

(x 2 + y 2 ) 

} 

. 

Step 2 : Leaving V ν1 
by { z = −ε | log ε |} 

We claim that there exists τ 0 > 0 independent of ε such that 

ζu (τ0 ) ∈ S ν1 
. 
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Indeed, in [1] was proven that ζs (t) = (0 , 0 , tanh (−t) + O(ε)) , among other results. Then we can go down along ζ u ( t ) as 

close to z = −1 as we want. Since ν1 is independent of ε we can ensure that there exists τ̄0 independent of ε such that 

π z ζs ( ̄τ0 ) = −1 + ν1 / 2 , consequently, as (22) assures that ζ u ( t ) will be exponentially close to ζ s ( t ), there exists τ 0 indepen- 

dent of ε such that ζu (τ0 ) ∈ S ν1 
and enters in V ν1 

. 

Let τ 1 be such that ζu (t) ∈ V ν1 
if t ∈ [ τ 0 , τ 1 ]. By Lemma 3.6 , the only way to leave the region V ν1 

is to cross the section 

{ z = −ε | log ε |} . In addition, Lemma 3.5 assures that ζ u ( t ) leaves every cylinder { x 2 + y 2 = R 2 } . Therefore, we conclude that 

ζu (τ1 ) ∈ { z = −ε | log ε |} . 
Step 3 : Final conclusion 

Since we are assuming that ζ u ( t ) ∈ int D for all t > 0, we have now that if t ≥ τ 1 , then π z ζu (t) ∈ [ −ε | log ε | , 0) . We write 

ζu (t) = (x u (t) , y u (t) , z u (t)) . It is now clear that b(x 2 u (τ1 ) + y 2 u (τ1 )) ≥ (a + 1)(1 − ν1 + O(ε 2 | log ε| 2 )) . As, by Taylor’s formula, 

there exists ξ t ∈ [ τ 1 , t ] such that 

z u (t) = z u (τ1 ) + 

˙ z u (τ1 )(t − τ1 ) + 

1 

2 

z̈ u (ξt )(t − τ1 ) 
2 

= − ε | log ε | + (−1 + ε 2 log 
2 ε + b(x 2 u (τ1 ) + y 2 u (τ1 )) + O(ε))(t − τ1 ) 

+ 

1 

2 

z̈ u (ξt )(t − τ1 ) 
2 

≥ − ε | log ε | + (−1 + (a + 1)(1 − ν1 ) + O(ε))(t − τ1 ) 

+ 

1 

2 

z̈ u (ξt )(t − τ1 ) 
2 . 

Take now t m 

= τ1 + mε | log ε | with m > 0. Since the solution ζ u ( s ) remains bounded for s ≥ τ 1 , 

z u (t m 

) ≥ ε | log ε | (− 1 − m + m (a + 1)(1 − ν1 ) 
)

+ O(ε 2 | log ε| 2 ) . 
Take ν1 > 0 such that (a + 1) ν1 < a, then (a + 1)(1 − ν1 ) − 1 > 0 and hence for 

m > 

2 

(a + 1)(1 − ν1 ) − 1 

we have that z u (t m 

) ≥ ε | log ε | + O(ε 2 | log ε| 2 ) > 0 which is a contradiction since we have assumed that z u ( t ) < 0 if t > 0. 

If we call Q 0 = (r 0 cos θ0 , r 0 sin θ0 , 0) = ζu (τ ) the point where z u (τ ) = 0 , and write the Eq. (19) in cylindrical coordinates 

we have that 

dθ

dt 
= 

−1 

ε 
+ O(ε) 

therefore, the estimate for θ0 in Proposition 3.1 comes from (23) . 

3.2.3. Proof of first item in Proposition 3.1 

It remains to estimate the distance from Q 0 to the unstable circle C 

u . Let us introduce r 2 = x 2 + y 2 . It is a well known fact 

that, as σ = O(ε) , System (19) written in cylindrical coordinates is O(ε) -close to an integrable system with first integral 

H(r, z) = r 2 /a 

[
1 − z 2 − b 

a + 1 

r 2 
]
. 

We introduce the new variable 

ρ = r(1 + εψ(z, θ )) −1 / 2 , (24) 

with ψ defined by (20) . Then the two dimensional unstable manifold of p − = (0 , 0 , −1) is 

W 

u (p −) = 

{
z 2 + 

b 

a + 1 

ρ2 = 1 

}
. 

The variation with respect to t of ( ρ , z ) is 

dρ

dt 
= (σ − az) ρ + ερ̂ f (ρ, z, θ, ε, σ ) 

dz 

d t 
= −1 + z 2 + bρ2 (1 + εψ) + ε(z + 1) ̂  h 1 (ρ, z, θ, ε, σ ) + ε ̂  h 2 (ρ, z, θ, ε, σ ) (25) 
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with 

̂ f , ̂  h 1 bounded and ̂

 h 2 of O(‖ ρ, z + 1 ‖ 2 ) . That is, the properties of ˜ f and 

˜ h 1 , ˜ h 2 are satisfied also after the change of 

variables. 

Step 1 . A bound of H ( ρ( t ), z ( t )). 

We first prove that, if ( ρ( t ), z ( t )) ∈ { H ( ρ , z ) ≥ 0} ∩ { z ≤ 0} for t ≥ t 0 , then 

H(ρ(t) , z(t)) ≤ H(ρ(t 0 ) , z(t 0 ))e Kε(t−t 0 ) (26) 

for some constant K independent of the initial condition. 

It is not difficult to see that 

dH 

dt 
(ρ, z) = 

2 

a 
H(ρ, z) 

(
σ + ε ̂  f (ρ, z, θ, ε, σ ) 

)
− 2 zρ2 /a 

(
ε(z + 1) ̂  h 1 (ρ, z, θ, ε, σ ) + ε ̂  h 2 (ρ, z, θ, ε, σ ) 

)
− ρ2+ 2 a 

2 b 

a + 1 

(
σ + ε ̂  f (ρ, z, θ, ε, σ ) 

)
. 

Let us denote σ = σε −1 = O(1) and 

h 2 (ρ, z, θ, ε, σ ) = 2 z ̂  h 2 (ρ, z, θ, ε, σ ) + ρ2 2 b 

a + 1 

(
σ + ̂

 f (ρ, z, θ, ε, σ ) 
)
. 

The unstable manifold of p− is contained in H(ρ, z) = 0 and therefore is given by ρ = ϕ(z) := 

√ 

a +1 
b 

(1 − z 2 ) 1 / 2 . Conse- 

quently 

dH 

dt 
(ϕ(z) , z) ≡ 0 . 

and using that H ( ϕ( z ), z ) ≡ 0, we obtain 

(z + 1) z ̂  h 1 (ϕ(z) , z, θ, ε, σ ) + h 2 (ϕ(z) , z, θ, ε, σ ) ≡ 0 . 

Notice that D ρ
̂ h 1 is bounded and D ρh 2 = O(‖ (ρ, z + 1) ‖ ) . Then, using the mean’s value theorem we have that ∣∣̂  h 1 (ρ, z, θ, ε, σ ) −̂ h 1 (ϕ(z) , z, θ, ε, σ ) 

∣∣ = 

∣∣∣∣∫ 1 

0 

D ρ
̂ h 1 (ρ + λ(ϕ(z) − ρ) , z, θ, ε, σ ) dλ

(
ϕ(z) − ρ) 

∣∣∣∣
≤ K| ϕ(z) − ρ| 

and ∣∣̂  h 2 (ρ, z, θ, ε, σ ) −̂ h 2 (ϕ(z) , z, θ, ε, σ ) 
∣∣ = 

∣∣∣∣∫ 1 

0 

D ρh 2 (ρ + λ(ϕ(z) − ρ) , z, θ, ε, σ ) dλ
(
ϕ(z) − ρ) 

∣∣∣∣
≤ K(| z + 1 | + ρ + | ϕ(z) − ρ| ) | ϕ(z) − ρ| . 

As a consequence ∣∣∣∣dH 

dt 
(ρ, z) 

∣∣∣∣ ≤ εKH(ρ, z) + Kερ2 /a 
(| z + 1 | + ρ + | ϕ(z) − ρ| )| ϕ(z) − ρ| . (27) 

Recall that ϕ(z) = 

√ 

a +1 
b 

√ 

1 − z 2 . Notice on the one hand that 

H(ρ, z) = ρ2 /a b 

a + 1 

(
a + 1 

b 
(1 − z 2 ) − ρ2 

)
= ρ2 /a b 

a + 1 

(
ϕ(z) + ρ

)
(ϕ(z) − ρ) 

which implies 

ρ2 /a | ϕ(z) − ρ| = 

√ 

a + 1 

b 
H(ρ, z) 

( √ 

1 − z 2 + ρ

√ 

b 

a + 1 

) −1 

On the other hand, using that ϕ( z ), ρ > 0, we have that | ϕ(z) − ρ| ≤ | ϕ(z) + ρ| . Therefore, using that z ≤ 0, from (27) and 

changing K if necessary, we obtain: ∣∣∣∣dH 

dt 
(ρ, z) 

∣∣∣∣ ≤ εKH(ρ, z) 

⎛ ⎝ 1 + 

| z + 1 | + ρ + | ϕ(z) − ρ| 
√ 

1 − z 2 + 

√ 

b 
a +1 

ρ

⎞ ⎠ 

≤ εKH(ρ, z) 

( 

1 + 

√ 

| z + 1 | 
| 1 − z| + 

b 

a + 1 

+ 1 

) 

≤ εKH(ρ, z) 
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This inequality implies, by Gronwall’s lemma, bound (26) , provided z ( t 0 ) ≤ 0. 

Step 2 . A bound for τ . 

Now we provide a bound from above of τ , the time that the solution ζ u ( t ) needs for crossing again { z = 0 } . Recall that 

ζ u,s ( t ) are the solutions such that ζu , s (0) = ζ u , s ∈ { z = 0 } . We call ( r u , θu , z u ) the corresponding cylindrical coordinates and 

ρu ( t ) the corresponding radius defined in (24) . We will prove that, 

ρu (τ ) = O(1) , τ ≤ d 0 
ε 

. (28) 

for some constant d 0 . 

First we consider t 1 > 0 such that ζ u ( t ) crosses by the first time the plane z = −η for some η > 0. We have that z u (t 1 ) = 

−η. As argued before, t 1 is independent of ε and the corresponding radius ρu (t 1 ) ∼ Kε −1+ a e −
π
2 ε , that is, it is of the same 

order as ‖ ζ u − ζ s ‖ which is written in (21) . 

Now we consider the minimum value t 2 > t 1 such that ζu (t 2 ) ∈ { z = −η} . We have that for t ∈ [ t 1 , t 2 ], z u (t) ∈ [ −1 , −η] . 

Then, by (25) we have that 

˙ ρu = −az u ρu + ρu O(ε) ≥ c 1 ρu 

with c 1 = aη + O(ε) . This implies that 

ρu (t) ≥ ρu (t 1 )e c 1 (t−t 1 ) , t ∈ [ t 1 , t 2 ] . (29) 

Assume η small enough to take ν1 < 1 − η2 , with ν1 > 0. Note that 

z 2 u (t 1 ) + 

b 

a + 1 

ρ2 
u (t 1 ) = η2 + O 

(
ε −1+ a e −

π
2 ε 

)
< 1 − ν1 , 

and hence, (ρu (t 1 ) , z u (t 1 )) / ∈ V ν1 
. Then, reasoning as before, there exists t ′ 1 > t 1 independent of ε such that ζu (t) ∈ V ν1 

for 

t ∈ [ t ′ 
1 
, t 2 ] . Then 

b 

a + 1 

ρ2 
u (t 2 ) ≥ 1 − ν1 − z 2 u (t 2 ) = 1 − ν1 − η2 > 0 

which is an independent of ε constant. Consequently, when ζ u crosses the plane { z = −η} the radius ρu (t 2 ) = O(1) . We 

recall that ρu (t 1 ) ∼ Kε −1+ a e −
π
2 ε . Then by (29) t 2 has to satisfy 

t 2 − t 1 ≤ 1 

c 1 

[ 
log ρu (t 2 ) + 

π

2 ε 
+ (a − 1) log ε 

] 
≤ c 2 

ε 

for some positive constant c 2 . 

The time τ that ζ u needs to meet the plane z = 0 satisfies τ − t 2 = O(1) . Indeed, on the one hand, meanwhile the 

solution is in V ν1 
, that is if z u (t) ≤ −ε | log ε | , we have that 

˙ z u = −1 + bρ2 
u + z 2 u + O(ε) ≥ −1 + (a + 1)(1 − ν1 − η2 ) + O(ε) ≥ a 

2 

if we take ν1 , η and ε small enough. Then, in this case we get z = −ε | log ε | in a finite time. On the other hand the transition 

from z = −ε | log ε | has been studied before, obtaining also a finite (in fact of O(ε | log ε | ) ) time. 

Step 3 . End of the proof. 

Using (26) with t 0 = 0 and t = τ and (28) : 

H(ρu (τ ) , z u (τ )) ≤ KH(ρu (0) , z u (0)) . 

Again by (28) , we deduce from the above bound that 

1 − b 

a + 1 

ρ2 
u (τ ) ≤ Kρu (0) 2 /a (1 + O(ρ2 

u (0)) . 

It follows that, there exists a constant L > 0 such that √ 

a + 1 

b 
− ρu (τ ) ≤ Lρu (0) 2 /a . 

The required bound for the distance between Q 0 and the unstable curve C 

u follows from the above inequality taking into 

account (21) and that C 

u is the circumference of radius 

√ 

a +1 
b 

. 
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Appendix A. Proof of Lemma 2.1 

We prove the result in the general case, being the divergence free case a straightforward consequence by performing the 

obvious changes. The unfolding X μ, ν can be written as 

X μ,ν (x, y, z) = (α∗y, −α∗x, 0) � + cμ + dν + O 2 , 

with c = (c 1 , c 2 , c 3 ) 
� ∈ R 

3 , d = (d 1 , d 2 , d 3 ) 
� ∈ R 

3 and where O 2 stands for a vector field with components of order 

O(‖ (x, y, z, μ, ν) ‖ 2 ) . In general, we will use the notation 

O � = O(‖ (x, y, z, μ, ν) ‖ 

� ) . 

By means of the change of variables 

x̄ = x − (c 2 μ + d 2 ν) 

α∗ , ȳ = y + 

(c 1 μ + d 1 ν) 

α∗ , 

we transform the unfolding into (keeping the same notation) 

X μ,ν (x, y, z) = (α∗y, −α∗x, c 3 μ + d 3 ν) � + O 2 . (A.1) 

After a second order normal form procedure applied to X μ, ν ( x, y, z ), it can be written as (see [23,24,39] ): 

d ̃  x 

dt 
= ̃

 x 
(
β1 

0 ν + β2 
0 μ − β1 ̃  z 

)
+ 

˜ y ( α∗ + α1 ν + α2 μ + α3 ̃  z ) + O 3 , 

d ̃  y 

dt 
= − ˜ x ( α∗ + α1 ν + α2 μ + α3 ̃  z ) + 

˜ y 
(
β1 

0 ν + β2 
0 μ − β1 ̃  z 

)
+ O 3 , 

d ̃  z 

d t 
= − γ 1 

0 μ − γ 2 
0 ν + γ1 ̃  z 2 + γ2 ( ̃  x 2 + 

˜ y 2 ) + γ3 μ
2 + γ4 ν

2 + γ5 μν + γ 1 
1 μ˜ z + γ 2 

1 ν ˜ z + O 3 . 

The coefficients β1 , γ 1 , γ 2 and α3 depend only on the initial singularity and straightforward computations give: 

β1 = −1 

2 

(
∂ 2 x,z π

x X 

∗ + ∂ 2 y,z π
y X 

∗)(0 ) , γ1 = 

1 

2 

∂ 2 z 2 π
z X 

∗(0 ) , 

γ2 = 

1 

4 

(
∂ 2 x 2 π

z X 

∗ + ∂ 2 y 2 π
z X 

∗)(0 ) . 

It follows from conditions in (6) and (9) that 

γ1 γ2 > 0 , γ1 β1 > 0 , | β1 | < 2 | γ1 | . (A.2) 

The terms β1 
0 , β

2 
0 , γ

1 
0 , γ

2 
0 depend on the second order derivatives of X μ, ν at zero, that is, on the terms of degree two of 

the unfolding. Namely, it is straightforward to check that 

β1 
0 = 

1 

2 

(
∂ 2 x,νπ

x X μ,ν + ∂ y,νπ
y X μ,ν

)
(0 ) , γ 1 

0 = −c 3 , 

β2 
0 = 

1 

2 

(
∂ 2 x,μπ x X μ,ν + ∂ y,μπ y X μ,ν

)
(0 ) , γ 2 

0 = −d 3 , 

where c 3 and d 3 are introduced in (A.1) . Note that 

γ 1 
0 = −c 3 = −∂ μπ z X 0 , 0 (0 ) γ 2 

0 = −d 3 = −∂ νπ
z X 0 , 0 (0 ) . 

It follows from the generic condition (7) that β1 
0 
γ 1 

0 
− β2 

0 
γ 2 

0 
� = 0 . Hence we can introduce new parameters 

˜ ν = β1 
0 ν + β2 

0 μ, ˜ μ = γ 1 
0 μ + γ 2 

0 ν, 

obtaining 

d ̃  x 

dt 
= ̃

 x ( ̃  ν − β1 ̃  z ) + 

˜ y ( α∗ + ˜ α1 ̃  ν + ˜ α2 ̃  μ + α3 ̃  z ) + O 3 , 

d ̃  y 

dt 
= − ˜ x ( α∗ + ˜ α1 ̃  ν + ˜ α2 ̃  μ + α3 ̃  z ) + 

˜ y ( ̃  ν − β1 ̃  z ) + O 3 , 

d ̃  z 

d t 
= − ˜ μ + γ1 ̃  z 2 + γ2 ( ̃  x 2 + 

˜ y 2 ) + ˜ γ3 ̃  μ2 + ˜ γ4 ̃  ν2 + ˜ γ5 ̃  μ ˜ ν + ˜ γ 1 
1 ˜ μz + ˜ γ 2 

1 ˜ νz + O 3 . 

Expressions of ˜ α1 , ˜ α2 , ˜ γ3 , ˜ γ4 , ˜ γ5 , ˜ γ 1 
1 

and ˜ γ 2 
1 

are not provided because they are not relevant in the sequel. Since α∗ > 0, in 

a neighbourhood of ( ̃  x , ̃  y , ̃  z , ˜ μ, ̃  ν) = (0 , 0 , 0 , 0 , 0) we can multiply the above vector field by the function 

1 

α∗ + ˜ α1 ̃  ν + ˜ α2 ̃  μ + α3 ̃  z 
= 

1 

α∗ − ˜ α1 

(α∗) 2 
˜ ν − ˜ α2 

(α∗) 2 
˜ μ − α3 

(α∗) 2 ̃
 z + O(‖ ( ̃ z , ˜ μ, ̃  ν) ‖ 

2 ) 
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to get the equivalent family 

d ̄x 

dτ
= x̄ 
(
β̄0 ̃  ν − β̄1 ̄z 

)
+ ȳ + O 3 

d ̄y 

dτ
= −x̄ + ȳ 

(
β̄0 ̃  ν − β̄1 ̄z 

)
+ O 3 

d ̄z 

dτ
= −γ̄0 ̃  μ + γ̄1 ̄z 

2 + γ̄2 ( ̄x 
2 + ȳ 2 ) + γ̄3 ̃  μ2 + γ̄4 ̃  ν2 + γ̄5 ̃  μ ˜ ν + γ̄ 1 

1 ˜ μz + γ̄ 2 
1 ˜ νz + O 3 

with 

β̄0 = 

1 

α∗ , β̄1 = 

β1 

α∗ , γ̄0 = 

1 

α∗ , γ̄1 = 

γ1 

α∗ , γ̄2 = 

γ2 

α∗ . 

Precise expressions for γ̄3 , γ̄4 , γ̄5 , γ̄
1 

1 and γ̄ 1 
1 are not relevant for further calculations. Then, since the condition (A.2) is 

satisfied, γ̄1 � = 0 and we can introduce the change of variables: 

ˆ x = x̄ , ˆ y = ȳ , ˆ z = γ̄1 ̄z + 

γ̄ 1 
1 ˜ μ + γ̄ 2 

1 ˜ ν

2 

, 

and parameters: 

ˆ μ = ˜ γ0 ̃  γ1 ̃  μ + 

( ̄γ 1 
1 ˜ μ + γ̄ 2 

1 ˜ ν) 2 

4 

− γ̄1 ̄γ3 ̃  μ2 − γ̄1 ̄γ4 ̃  ν2 − γ̄1 ̄γ5 ̃  μ ˜ ν, 

ˆ ν = β̄0 ̃  ν + 

β̄1 ( ̄γ
1 

1 ˜ μ + γ̄ 2 
1 ˜ ν) 

2 ̄γ1 

˜ μ, 

to obtain the normal form (10) : 

d ̂  x 

dτ
= 

ˆ x 
(

ˆ ν − a ̂ z 
)

+ 

ˆ y + O 3 

d ̂  y 

dτ
= − ˆ x + 

ˆ y 
(

ˆ ν − a ̂ z 
)

+ O 3 

d ̂  z 

dτ
= − ˆ μ + ̂

 z 2 + b( ̂  x 2 + 

ˆ y 2 ) + O 3 

with a = 

β̄1 
γ̄1 

, b = γ̄1 ̄γ2 or equivalently: 

a = 

β1 

γ1 

, b = 

γ1 γ2 

(α∗) 2 
. 

Note that the condition (A.2) is now equivalent to: 

b > 0 , a > 0 , a < 2 , 

where the two first conditions correspond to (6) and the third one to (9) . 
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