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Abstract: The lack of high-performance RINA (Recursive InterNetwork Architecture) implementations
to date makes it hard to experiment with RINA as an underlay networking fabric solution for different
types of networks, and to assess RINA’s benefits in practice on scenarios with high traffic loads.
High-performance router implementations typically require dedicated hardware support, such as
FPGAs (Field Programmable Gate Arrays) or specialized ASICs (Application Specific Integrated
Circuit). With the advance of hardware programmability in recent years, new possibilities unfold to
prototype novel networking technologies. In particular, the use of the P4 programming language
for programmable ASICs holds great promise for developing a RINA router. This paper details the
design and part of the implementation of the first P4-based RINA interior router, which reuses the
layer management components of the IRATI Linux-based RINA implementation and implements the
data-transfer components using a P4 program. We also describe the configuration and testing of our
initial deployment scenarios, using ancillary open-source tools such as the P4 reference test software
switch (BMv2) or the P4Runtime API.
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1. Introduction

All existing implementations of the RINA architecture to date are software-based. IRATI [1]
and rlite [2] are C/C++-based implementations for Linux hosts—which can also be used as low-end
software routers—but are mostly focused on Linux-based servers, laptops, and virtual machines.
ProtoRINA [3] is a Java-based RINA implementation, mostly designed for education purposes and
quick prototyping in academic environments. Finally, RINASim [4] is an OMNeT++-based simulation
framework for RINA networks.

A high-performance RINA implementation would be a great complement to the current
software-based prototypes, opening the door to new use cases for RINA experimentation such
as campus networks, datacenter fabrics, 5G network backhaul or communication service providers
core networks to name a few; and planting the seed for future RINA-based products. It would
also contribute towards lowering the perception of risk of the adoption of the RINA technology,
demonstrating that RINA implementations can reach at least the same performance as equivalent
implementations of legacy protocols.

One potential path towards a high-performance RINA router would be to use a fast packet I/O
(Input/Output) software framework that can run on generic computer hardware, such as netmap [5]
or Intel DPDK (Data Plane Development Kit) [6]. The advantages of this approach are that relatively
high throughput can be provided with a great amount of flexibility—since the implementation of the
software program is only bound by the constraints of computer hardware instruction sets—and the
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diversity in the available hardware platforms. However, depending on how intensive the processing
per packet is, the CPU quickly becomes the limiting performance factor and any throughput greater
than 15 Mpps per core is hard to achieve [7]. Moreover, energy consumption of compute-based routers
is higher than the one of routers with specialized networking hardware.

High-performance routers usually feature dedicated hardware such as ASICs (Application
Specific Integrated Circuits) that allow them to efficiently process many packets in very little time.
Although usually each ASIC features an SDK (Software Development Kit) that provides a programmable
environment, this programmability is usually limited by the protocols the device supports. Hence,
until very recently, developing high-performance implementations for new networking protocols
involved the use of FPGAs (Field Programmable Gate Arrays); which usually bring a complex
development environment and have a limited hardware catalogue (e.g., the NetFPGA open-source
hardware project [8] has been one of the most successful FPGA-based platforms for network research
and innovation to date, since it permits rapid prototyping).

P4 [9] is an initiative designed to solve this issue, by enhancing the programmability exposed by
high-performance packet forwarding ASICs. P4 is a language for expressing how packets are processed
by the data plane of a programmable forwarding element such as a hardware or software switch,
network interface card, router, or network appliance. P4 defines the pipeline of the target, as part of
the data plane, yet it cannot be used to define the interaction between the control and data planes.

As shown in Figure 1, target manufacturers provide the hardware or software implementation
framework, an architecture definition, and a P4 compiler for that target. P4 programmers write
programs for a specific architecture, which defines a set of P4-programmable components on the target
as well as their external data plane interfaces.
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Figure 1. Summary of the development workflow of a P4 program (source ONF, Open
Networking Foundation).

This paper presents the first implementation of a RINA interior router using P4 and leveraging on
P4’s standard software switch (BMv2). The remainder of this paper is organized as follows: Section 2
discusses the use cases for a RINA router and identifies potential limitations in the P4 language that
may impact their feasibility. Section 3 introduces the design and implementation of the software-based
solution, with Section 4 presenting the experimental setup and discussing its evaluation in Section 5.
Section 6 continues by detailing the next steps to attain the completion of the P4-based RINA interior
router. Finally, Section 7 provides concluding remarks and discusses next steps for future work.

2. Use Cases: Interior and Border Routers for Agile Data Centers

The rapid growth of Cloud applications and users has caused a fast evolution in Data Center
hardware and software technologies, including the networking aspects [10]. Software-Defined Data
Centers (SDDC) have emerged as a concept in which the Data Center is no longer constrained by the
physical location of its resources (Compute, Storage, Network), but rather by the logical connectivity
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between virtualized versions of such components (virtual machines, containers, logical storage volumes,
virtual networks). SDDC users are given the illusion of a private, customized logical datacenter that
optimally suits their needs.

SDDCs require a flexible and dynamic networking substrate that can adapt to the changing
connectivity and quality requirements of different user groups, with the ability to create, span and
delete virtualized networks on the fly providing different Quality of Service [11]. Several studies to
date have shown that RINA-based datacenter networks provide advantages over existing networking
solutions in terms of routing/forwarding scalability [12], better congestion management [13] and
flexible Quality of Service support [14]. Moreover, since datacenter networks are usually private and
not exposed outside of the DC boundaries, they provide an ideal environment for the deployment of
new networking technologies such as those based on the RINA architecture and protocol frameworks.

Figure 2 illustrates a simplified design of a DC, showing the physical systems and their connectivity.
Servers grouped in racks provide compute or storage resources. Top of rack (ToR) routers interconnect
the servers in the same rack. Spine routers provide inter-rack connectivity, and connectivity to
gateways that move traffic in/out the DC towards other DCs, customer networks, or the public Internet.
ToR and Spine routers are typically interconnected following a leaf-spine configuration. Large scale
or hyper-scale DCs have a more complex structure, usually considering the design of Figure 2 as a
module and designing the DC network as hierarchies of such modules, as shown in [12]. Nevertheless,
the example of Figure 2 is enough to discuss the application of RINA in SDDCs and easier to understand,
hence we will use it as is.
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Figure 3 [15] shows a design of DIFs (Distributed IPC Facilities, the repeating layers of RINA)
for the simple DC outlined in Figure 2. It depicts a Virtual Machine (VM) to VM connectivity
scenario, where the rounded, black, solid rectangles represent physical systems (Computers or Routers),
the horizontal rectangles represent layers of network protocols (Ethernet or DIFs), small circles represent
IPC Processes (IPCPs, the instantiation of a DIF in a system), and large circles represent applications
instances. All point-to-point links use Ethernet, acknowledging the fact that most Network Interface
Cards (NIC) today are Ethernet-based. The Data Center Fabric DIF connects all the servers in the DC
together through the ToR and Spine routers, following a leaf-spine connectivity graph. Multiple slice
DIFs “float” on top of the Data Center Fabric DIF, providing a customized and private networking
environment that connects together a certain number of application instances on behalf of a customer.
Hence, each slice DIF can be thought of as an agile Virtual Private Network (VPN) that can be scaled
up and down following the customer needs.

Figure 4 extends Figure 3 design into a scenario that uses two physically separated Data Centers.
Each DC has its own DC Fabric DIF, and an Inter-DC DIF connects one or more gateways of multiple
DCs. The Inter-DC DIF can operate over the public Internet, or over private inter-DC networks that use
MPLS, Ethernet, or other networking technologies. In this scenario customer slice DIFs span multiple
Data Centers, floating on top of the DC Fabric DIFs and the Inter-DC DIF.



Computers 2020, 9, 70 4 of 20Computers 2020, 9, x FOR PEER REVIEW 4 of 20 

 
Figure 3. Example design for the DIFs in a DC, showing VM (Virtual Machine) to VM connectivity. 
Small circles represent IPC Processes (IPCPs), while large circles represent application instances [15]. 

 
Figure 4. Example design for the DIFs in multiple DCs, showing VM (Virtual Machine) to VM 
connectivity. Small circles represent IPC Processes (IPCPs), while large circles represent application 
instances. 

By carefully analyzing the role that high-performance RINA routers play in the SDDC 
configurations shown in Figures 3 and 4, we come to the conclusions that there are two types of 
situations: one in which the RINA router just forwards data from a single DIF (as is the case of ToR 
and Spine routers), and another one in which the RINA router moves data up/down from a “lower 
DIF” before/after forwarding it on an “upper DIF” (as is the case of the Gateway Routers; we do not 
consider hosts because they will be typically using a software implementation, which is not the 
scope of this paper). We name the former configuration as interior router, and the latter as border 
router as shown in Figure 5. 

 
Figure 5. RINA router use cases. 

The interior router configuration features just one “level” of DIFs on top of Ethernet interfaces, 
hence the router just gets the packets from the NIC, unprotects the RINA PDUs (Protocol Data 
Units) if needed (decrypt, integrity verification, Cyclic Redundancy Checks), checks the forwarding 
table and schedules it to be sent towards an output interface (protecting the PDU again if needed). 
The border router configuration includes two levels of DIFs, with flows on higher-level DIFs being 
aggregated onto “N-1” flows in lower-level DIFs. Hence the components implemented via P4 must 
carry out other functions such as flow termination, flow control or even retransmission control (if 
needed), which require keeping per-flow state. 

P4 has several limitations compared to a general-purpose programming language. Some are 
due to the high-performance requirements of the hardware that is to be programmed, others to the 

Figure 3. Example design for the DIFs in a DC, showing VM (Virtual Machine) to VM connectivity.
Small circles represent IPC Processes (IPCPs), while large circles represent application instances [15].

Computers 2020, 9, x FOR PEER REVIEW 4 of 20 

 
Figure 3. Example design for the DIFs in a DC, showing VM (Virtual Machine) to VM connectivity. 
Small circles represent IPC Processes (IPCPs), while large circles represent application instances [15]. 

 
Figure 4. Example design for the DIFs in multiple DCs, showing VM (Virtual Machine) to VM 
connectivity. Small circles represent IPC Processes (IPCPs), while large circles represent application 
instances. 

By carefully analyzing the role that high-performance RINA routers play in the SDDC 
configurations shown in Figures 3 and 4, we come to the conclusions that there are two types of 
situations: one in which the RINA router just forwards data from a single DIF (as is the case of ToR 
and Spine routers), and another one in which the RINA router moves data up/down from a “lower 
DIF” before/after forwarding it on an “upper DIF” (as is the case of the Gateway Routers; we do not 
consider hosts because they will be typically using a software implementation, which is not the 
scope of this paper). We name the former configuration as interior router, and the latter as border 
router as shown in Figure 5. 

 
Figure 5. RINA router use cases. 

The interior router configuration features just one “level” of DIFs on top of Ethernet interfaces, 
hence the router just gets the packets from the NIC, unprotects the RINA PDUs (Protocol Data 
Units) if needed (decrypt, integrity verification, Cyclic Redundancy Checks), checks the forwarding 
table and schedules it to be sent towards an output interface (protecting the PDU again if needed). 
The border router configuration includes two levels of DIFs, with flows on higher-level DIFs being 
aggregated onto “N-1” flows in lower-level DIFs. Hence the components implemented via P4 must 
carry out other functions such as flow termination, flow control or even retransmission control (if 
needed), which require keeping per-flow state. 

P4 has several limitations compared to a general-purpose programming language. Some are 
due to the high-performance requirements of the hardware that is to be programmed, others to the 

Figure 4. Example design for the DIFs in multiple DCs, showing VM (Virtual Machine) to
VM connectivity. Small circles represent IPC Processes (IPCPs), while large circles represent
application instances.

By carefully analyzing the role that high-performance RINA routers play in the SDDC
configurations shown in Figures 3 and 4, we come to the conclusions that there are two types
of situations: one in which the RINA router just forwards data from a single DIF (as is the case of ToR
and Spine routers), and another one in which the RINA router moves data up/down from a “lower
DIF” before/after forwarding it on an “upper DIF” (as is the case of the Gateway Routers; we do not
consider hosts because they will be typically using a software implementation, which is not the scope
of this paper). We name the former configuration as interior router, and the latter as border router as
shown in Figure 5.
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The interior router configuration features just one “level” of DIFs on top of Ethernet interfaces,
hence the router just gets the packets from the NIC, unprotects the RINA PDUs (Protocol Data Units) if
needed (decrypt, integrity verification, Cyclic Redundancy Checks), checks the forwarding table and
schedules it to be sent towards an output interface (protecting the PDU again if needed). The border
router configuration includes two levels of DIFs, with flows on higher-level DIFs being aggregated
onto “N-1” flows in lower-level DIFs. Hence the components implemented via P4 must carry out
other functions such as flow termination, flow control or even retransmission control (if needed),
which require keeping per-flow state.

P4 has several limitations compared to a general-purpose programming language. Some are
due to the high-performance requirements of the hardware that is to be programmed, others to the
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short lifetime of the language and its continuous evolution. The following limitations may impact the
feasibility of RINA router use case implementation, especially the border router one:

• Support for loops. There are no explicit loop or iteration constructs in P4 [16]. This is a language
design choice motivated by the types of high-speed packet processing hardware architectures that
are among the target platforms for P4. An indirect form of looping can be achieved by using the
resubmit (invoked in ingress, returns the packet to the parser) and recirculate (invoked in egress,
returns the packet to the parser and ingress pipeline) primitives.

• Timers to fire actions. P4 does not support timers by default, unless a specific target provides a
timer construct as an external module (which makes the P4 program target-dependent).

• Support for encryption. Support for encryption is delegated to target-specific external modules [16]
(again making the P4 program target-dependent).

• Programming the packet scheduler (Buffering Queuing Engine, BQE). P4 does not support yet
programmability of the packet schedulers, although some proposals have already been made in
the academic literature [17]. Even though the BQE cannot be programmed using P4, it can be
configured both directly using control plane APIs and by setting intrinsic metadata.

• Fragmentation or reassembly. P4 does not provide support to carry out fragmentation or
reassembly at the data plane [18]. To carry out these functions, packets must be sent to the control
plane and reinjected (introducing a significant performance penalty). The same can be said for
concatenation and separation.

• No built-in support for generating new packets. A possible work-around (to e.g., generate a
flow-control PDU in response to a data-transfer PDU) would be to clone the packet, modify the
header values and remove the payload (can be supported by truncating the cloned packet).
Further investigation with ASIC-based hardware needs to be carried out to assess the feasibility
of this approach.

Having theoretically analyzed the limitations of the P4 language, the implementation of a RINA
interior router with P4 seems feasible; with the caveats that it is not possible to program the scheduling
algorithms used to multiplex traffic and that encryption is only available via target-dependent external
modules. The feasibility of the border router use case is definitely more questionable, and even if
feasible it would be quite constrained: lower DIFs would not be able to concatenate PDUs from
higher DIFs, the use of recirculation as a hack to generate control packets would seriously impact
performance, etc. It may be the case that the border router use case cannot be fully realized with the
current P4 technology, and the use of other—more flexible but less mature—networking hardware
programmability frameworks, such as the ones based on extended finite state machines, may be
required [19]. Hence, the authors have decided to focus on the interior router use case for an initial
Proof of Concept.

3. Design and Implementation of the Software-Based Proof of Concept

The entity that implements the DIF functionality in a given device is the IPCP. IPCPs perform
several different functions, mainly divided in data-transfer control and data-transfer layer management,
as shown in Figure 6. The data transfer and data-transfer control functions are performance-critical
and must be implemented in the P4-enabled data plane. Such functions are executed per packet
and include fragmentation/reassembly, forwarding, multiplexing, encryption, integrity protection,
flow control, retransmission control, etc., while layer management functions are about the coordination
of the different IPCPs in the same DIF (enrolment, authentication, access control, flow allocation,
routing, resource allocation, namespace management) and can be implemented in the control plane.
Finally, the Management Agent (MA) is the component that manages the lifecycle of IPCPs (creation,
destruction, monitoring, (re-) configuration) and interfaces the device with the Network Management
System. The MA would also be implemented in the control plane.
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The Proof of Concept presented in this paper implements a complete RINA interior router
pipeline using the P416 revision of the P4 language [16]. This is complemented by a control plane
implemented by both a Python script and a C++-based application for interacting with the P4Runtime
API. Such applications demonstrate the main interactions with the P4 data plane that would be required
by a full control planed implementation: (i) loading the P4 program; (ii) adding or removing entries from
the data plane tables; and (iii) sending and receiving packets from/to the data plane. The behavioral
model (BMv2) software switch [20] is chosen as the target device to prototype P4 programs.

3.1. Data Plane

For this implementation of the RINA interior router, the v1model P4 architecture has been used
on top of the BMv2 simple_switch target, a software switch developed by the P4 community for
testing functionality of P4 programs. Figure 7 pictures the design of the RINA over Ethernet pipeline,
as described in the following paragraphs. The pipeline supports the processing of both EFCP (RINA’s
data-transfer protocol, called Error and Flow-Control Protocol) and IP packets, since it is expected that
initial RINA routers would be deployed in scenarios where both RINA and IP must coexist. Since this
work is an initial Proof of Concept, we have just implemented support for IPv4 packet processing,
yet adding IPv6 processing capabilities to the pipeline can be done following the same approach
(the parser, deparser, and match-action blocks dedicated to IP processing need to be extended).
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The pipeline needs to deal with the headers that allow data transmission in different ways and
layers in the Data Center: both: EFCP (RINA’s data-transfer protocol) and Ethernet, VLAN (IEEE
802.1Q) and IPv4 for the basic subset of data transmission protocols in Layers 2 and 3. The parsing and
processing for other possible protocols, such as VxLAN (Virtual eXtensible Local Area Network) or
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IPv6 can be implemented in a similar manner, although not done out here for simplicity purposes.
The logic of the pipeline starts with a programmable parser to extract the packet headers defined above.
The parser supports the following protocol layering scenarios: EFCP over Ethernet, EFCP over a VLAN
over Ethernet, IP over Ethernet, and IP over a VLAN over Ethernet. For simplicity, the parser assumes
a single EFCP specific syntax, although multiple syntaxes can be supported easily (e.g., by associating
an input interface of VLAN to a specific EFCP syntax or by checking the EFCP version number).
The parser also checks the validity of the EFCP PDU types.

Between the parser and deparser blocks, the pipeline introduces checksum-related logic in two
different blocks that either verify checksums on the incoming EFCP and IPv4 packets and update
checksums on the outgoing ones. Once the checksum verification is carried out, the ingress block of
match-action processing performs forwarding of IPv4 and EFCP PDUs by using, respectively, a long
prefix match table and an exact match table. If the packet matches no entries in the table it is dropped;
otherwise the packet is validated for correctness and sent according to the specific table entry that
dictates the processing for its given type. Besides that, an EFCP PDU is sent to the control plane of
the router if its type is layer_management. Pseudocode for specific ingress packet processing logic is
provided in Figure 8.
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Right after ingress packet processing, an egress block of match-action processing allows the P4
program to modify a packet based on the port it is departing from. This block takes care of providing
congestion control information by using the Explicit Congestion Notification (ECN) flag to mark the
EFCP packets that have experienced queue occupancy higher than a given (configurable) threshold X
of PDUs while being processed by the Traffic Manager.

At the end of the pipeline, the programmable deparser reconstructs the packet as specified in the
P4 program. The deparser supports the same protocol layering as the parser, but it is not tied by the
input layering: the router may get an EFCP packet over Ethernet without VLANs on one side and
produce an EFCP packet over a VLAN over Ethernet on the output side; and vice versa. The same
applies to the IP packet processing pipeline.



Computers 2020, 9, 70 8 of 20

3.2. Control Plane

The interaction with the data plane is achieved through P4Runtime, a control plane specification
defined by the P4 consortium for runtime control of P4 targets which achieves independent
communication between the P4 program (protocol) and the target. The P4Runtime API [21] enables
(i) specifying and loading a specific pipeline P4 program; (ii) sending and receiving packets and
notifications; and (iii) reading and writing the forwarding table entries, counters, and other chip
features. The target device must provide an implementation of the P4Runtime API to support P4
programmability. Such implementation leverages on gRPC (Google Remote Procedure Call) methods,
defined as generic protobuf (Google Protocol Buffers) data structures. Through the gRPC bindings
for languages such as C++, Python, and Go, these structures are used to automatically generate
wrappers from interfaces that enable communication between a client and the specific server in
different languages. The P4Runtime API exposes the following methods:

• Write: adds or updates one or more entities on the target, then returns a single response.
• Read: fetches one or more entities from the target and returns as many responses as

entities requested.
• SetForwardingPipelineConfig: uploads the P4 pipeline configuration (via the P4 program and the

target configuration), then returns a single response.
• GetForwardingPipelineConfig: gets the current P4 forwarding pipeline configuration (as defined

previously by the above method), then returns a single response.
• StreamChannel: models the bi-directional stream between controller and target, where multiple

requests and responses can occur at any point. This is used to first setup such connectivity through
the arbitration that decides when and how each component can connect by means of consensus
algorithms, as well as to indicate when the session is live; but also to stream notifications from the
target and the bi-directional communication of packets to/from the target.

• Capabilities: requests data for a single capability (e.g., API version) and returns a single response.

Depending on the language of choice, the signature of the implemented methods will change,
greatly impacting the workflow. An example of this is that as opposed to the Python bindings,
the StreamChannel constructor in the C++ bindings does not expect an iterator on incoming
messages and requires a stricter control when reading from the incomings stream. As defined
above, the StreamChannel method—disregarding implementations specific to each language—is
used in the crucial stage of establishing the bi-directional session from the client (controller) to the
server in the target (determined by “grpcAddr” in Figure 9). The handshake process negotiates first
the arguments of the session with the target. Among them, the arbitration mechanism determines
whether the controller is master or slave, i.e., it has write or read permissions. Once the session
is up, the controller must handle ingress response and egress request messages towards the target,
for instance by using a couple of FIFO (First In First Out) queues. Figure 9 provides a rough approach
to this step, although the specifics will change considerably depending on the options provided by
each gRPC binding.

After properly establishing the session between the client in the controller and the server in
the target device, the SetForwardingPipelineConfig method can push the pipeline (definition of the
program) and the configuration of the target configuration, as determined by “pipeline” and “targetCfg”
in Figure 10.
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Given that the RINA P4 implementation must be able to configure, control, and program
the pipeline of P4-enabled white box devices, we need a simple Network OS (Operating System)
that enables easy integration of P4Runtime into the targets, and that also provides the usual
hardware management, configuration, and monitoring facilities. Stratum [22] is an open-source,
production-targeted, thin switch OS developed by the Open Networking Foundation (ONF) and
Google that fits well with this use case, as it exposes next-generation software-defined networking
interfaces and models such as P4Runtime API to enable interactions with the P4 data plane. Figure 11
shows a simplified view of Stratum’s architecture for the BMv2 simple_switch target device.Computers 2020, 9, x FOR PEER REVIEW 10 of 20 
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Generally speaking, Stratum enables model-driven management and operations via the
gNMI (gRPC Network Management Interface) and gNOI (gRPC Network Operations Interface)
interfaces, providing declarative device configuration and streaming telemetry capabilities.
Moreover, Stratum has drivers to support hardware from multiple vendors, including Barefoot Tofino.
Hence, the control plane developed for the BMv2 software switch can be later reused for hardware-based,
P4-capable targets with minimal changes. In our initial implementation, Stratum runs on top of BMv2
and implements P4’s v1Model architecture with Stratum APIs over gRPC.

We initially used P4Runtime-Shell [23] as the control plane for our PoC (Proof of Concept).
P4Runtime-shell is a Python tool that interacts with the P4 Runtime API via an interactive shell. It starts
by opening a session with the P4 Runtime API gRPC server and immediately loading the pipeline with
the EFCP program. Once the session is established, the match-action table entries can be sent on real
time to the target via the interactive console provided by P4Runtime-Shell. The format is shown in
Figure 12.
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The data plane is now configured, and the data transmission can start. The control plane listens
for PACKET_IN events (EFCP PDU coming from the data plane), logs the PDU contents and sends
the PDU back to the data plane. The source in Figure 12 documents how to use P4Runtime-Shell to
setup the session and then monitor the sending and receiving of EFCP PDUs from/to the data plane.
An infinite loop can serve to monitor each packet from the ingress queue, print its contents, and finally
push it to the egress queue so that is ready to be processed and forwarded.

After validating the Python PoC, we developed a C++-based control plane, which broadly
implements the same P4Runtime interfaces as those exposed by P4Runtime-Shell and which makes
it possible to directly integrate and interact with the control plane to feed it with adequate data.
As described in Section 6, the layer management components of the IRATI RINA implementation will
be able to directly integrate and interact with this implementation of the control plane to feed it with
adequate data.

4. Setup of the Software-Based Solution

Both the experimental and the extended scenarios leverage on the use of Docker containers, as a
more portable and cleaner setup that can run indistinctly in a developer’s machine and in the remote
integration nodes.

In both setups, Mininet has been used to build virtual networks and to interact with them using
the Mininet Command Line Interface (CLI) or API. A realistic virtual network is created, running a real
kernel, switch and application code, on a single machine (virtual or physical). The Mininet Python API
bindings simplify the way to create a flexible scenario that can be configured based on the parameters
passed into it and can be run as a program—for instance, as part of a test. Another advantage of Mininet
is that the hosts share the root file system of the underlying machine. Internally, Mininet employs
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lightweight virtualization features in the Linux kernel, including process groups, CPU bandwidth
isolation, as well as network namespaces, and combines them with link schedulers and virtual Ethernet
links. These features yield a system that starts faster and scales to more hosts than emulators that use
full virtual machines.

4.1. Experimental Setup

The first Docker container hosts a containerized version of the open-source P416

compiler, which includes a backend for the BMv2 software switch target named p4c-bm2-ss.
The compiler generates two files, which are later used by the control plane when invoking the
SetForwardingPipelineConfig method. The first file, called bmv2.json, defines a configuration for the
BMv2 simple_switch target in JSON (JavaScript Simple Object Notation) format. When the switch
target receives a new packet, it uses this configuration to process the packet in a way that is consistent
with the P4 program. The second file, called p4info.txt, contains an instance of a P4Info schema for our
P4 program, describing the match-action tables that are exposed via the P4Runtime API. The second
Docker container creates a Mininet emulated network of a BMv2 switch running Stratum and the EFCP
pipeline presented in Section 3.1, interconnecting two hosts as depicted by Figure 13. Each host can
generate EFCP and IP packets, and is directly connected to the BMv2 switch via a single interface.
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4.2. Extended Setup

The extended setup also establishes, in a first stage, a virtualized environment interconnecting a
similar BMv2-enabled Mininet configuration and the P4Runtime client. The second stage requires the
installation and configuration of the hardware environment that is interconnected and where the P4
program and the P4Runtime client will run.

The first Docker container is dedicated to provisioning a specialized virtual environment that
automatically installs the protobuf and gRPC libraries, as well as other dependencies. It then downloads
the P4Runtime specification and compiles the protobuf files using the C++ bindings. This generates
several classes that implement the data structures and methods defined by P4Runtime, such as the
so-called service stub: an interface class that is used by the client to interface with the RPC (Remote
Procedure Call) methods exposed by the server. With this environment set up and connected to the
same network as the second container, the P4Runtime gRPC client can be executed.

On the other hand, the second container runs the same Mininet network as depicted in Figure 13.
Thus, the client can connect to the P4Runtime API in the server exposed by the simple_switch inside
this container.
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4.3. Production Setup

While the scenarios described above are virtualized, the final deployment setup consists of
physical P4-enabled hardware that runs in a remote datacenter. Figure 2 illustrates the deployment
setup that is to be used in the production environment.

Each target to be managed via P4 shall be reachable by the Stratum NOS (Network Operating
System), which must be also reachable from the controller that will host the control plane of each target.
However, before Stratum can be installed, an operator must follow a set of steps, as described in the
Stratum documentation. Depending on the ASIC vendor and the model of the target, this may require
more steps.

First, ONLPv2—a special branch of the Open Network Linux (ONL) distribution—must be
installed on the target device, which must have the Open Network Install Environment (ONIE)
pre-installed, as that is the bare minimum to install any software on top. ONLPv2 may be then built
from scratch or downloaded from the fork maintained by ONF. The ONIE boot loader will detect the
NOS installed after following one of the available methods, and the installed ONL will be the OS of
reference from now on in the target device. Nevertheless, the installation procedure is ASIC-dependent,
so for instance a Tofino-based target can use the alternative of installing the Board Support Package
(BSP). At this point, Stratum should be run on a separate server to generate a target-specific binary.
Certain flags can be used to customize the binary, such as using the interfaces provided by ONLPv2 to
access the Physical Hardware Access Layer (PHAL), as well as providing the version of “P4Studio”,
the Software Development Environment (SDE) in case of a Tofino ASIC.

Finally, the binary generated via Stratum must be placed in the target device. Depending on the
target platform, the binary can be a stand-alone package that is directly executed on the switch or it
may require providing a dynamic array of arguments in the form of configurations, such as the base
and specific chassis configuration (definition of the chip capabilities and all possible port configurations,
for the base configuration, or the subset of the available ones, for the specific configuration) and other
files for different chip-specific properties (such as Access Control Lists—ACLs), as well as files that
describe vendor-specific environments that can provide further configuration. When the Stratum
binary is running on all different silicon targets, these should become reachable from any of the
connected servers. A control plane binary running on such machines should be able to connect to each
of the ASICs.

5. Evaluation of the Software-Based Proof of Concept

We now proceed to document the evaluation of the connectivity and performance of the
experimental setup. As a next step, once the extended and production setups are fully configured and
available, further tests will be performed.

5.1. Connectivity Tests

Having set up the experimental scenarios using Mininet, we proceeded to validate the functionality
of the P4 program via initial connectivity tests. First, the P4Runtime-Shell framework is used to
populate the data plane tables of the BMv2 simple_switch with adequate forwarding instructions,
as documented in Figure 14.

Once the connectivity was set up, a simple packet generator was implemented with the Scapy tool.
Scapy is a Python framework that enables users to send, sniff, dissect, and forge network packets among
other features. It can be used as an interactive Python interpreter or imported as a Python module and
used for further coding. The main advantage of using this framework is that it facilitates the generation
of packets for any type of protocol and allows the transmission and reception of such packets via the
desired network interfaces. We have created Scapy scripts to generate EFCP packets encapsulated
over Ethernet—with and without VLANs—to test the different configurations supported by the EFCP
P4 data plane. We have also created equivalent scripts to send and receive IP packets, validating the
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basic functionality of the hybrid EFCP/IP P4-based router executing in the BMv2 simple_switch target
device. Connectivity tests have performed well and verified the functionality of the EFCP/IP RINA
interior router in a variety of configurations.
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5.2. Performance Tests

After the successful execution of connectivity tests, we have decided to stress the system a bit more
with a set of performance tests. We are aware that BMv2 is not meant to be a production-grade software
switch but designed as a tool for developing, testing, and debugging P4 data planes and control plane
software written for them. As such, the performance of BMv2—in terms of throughput and latency—is
significantly less than that of a production-grade software switch such as Open vSwitch. Performance
is also very inconsistent and depends on a variety of factors such as the logic of the P4 program under
execution, the P4 compiler used, the BMv2 version, the flags used to build BMv2, the number of data
plane table entries, the characteristics of the hardware where the software is running (e.g., CPU cores,
how much CPU cache, etc.), or whether the scenario is running on a bare-metal Linux machine or a
Virtual Machine.

Despite BMv2 just being a development and testing tool, performance tests are still a useful way
to make sure there are no hidden issues in our P4 program that did not surface during the connectivity
tests. They are also a good way to understand what the performance limitations of BMv2 are and
hence what the limits are to the scenarios that can be tested using this tool.

A custom C program was developed as a performance testing tool. The program accepts a network
interface name, which is used to send or receive Ethernet packets encapsulating EFCP or IP PDUs.
The client mode of the program sends a continuous flow of IPv4 or EFCP packets through the specified
network interface with the desired packet length, optionally pausing a certain number of microseconds
between each packet write event. The server mode of the program binds to the network interface and
receives all Ethernet packets, measuring the throughput achieved by the transmission.

We have run the performance tests using two different resource configurations. The first one
features a Linux VM with 2 GB of RAM and 2 CPU cores. The tests have been done with the BMv2
simple_switch_grpc component configured without logging macros. The second configuration is based
on an Amazon Web Services (AWS) EC2 instance (c4.2xlarge) running Ubuntu server with 8 CPU
cores and 15 GB of RAM. Tests have been carried out with the BMv2 simple_switch configured with
optimization flags and without logging macros. All Ethernet links are virtual links that connect virtual
interfaces within the same server; hence we are only evaluating the performance of the P4 pipeline
implemented via the BMv2 model.
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5.2.1. Local Virtual Machine Scenario Results

Figure 15 shows the throughput measured by the custom C application in Mbps, as a function of the
packet size in bytes. The green line represents the average results of 10 tests with IP packets, while the
blue line represents the average result of 10 tests with EFCP packets. As expected, the throughput is
quite low (limited to around 60 Mbps) and slightly higher for the IP tests. The lower performance of
the EFCP packet processing pipeline from the prototype is due to a few more steps and validations:
checking for valid PDU types, parsing and generating VLAN headers, marking packets with the ECN
flag. Packet length in the throughput tests varies from 250 bytes to 1470 bytes.
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Figure 16 shows packet loss measured at the P4 router’s input interface, as a function of the
inter-arrival time of the packets generated by our test program, with a packet length of 500 bytes.
As it can be seen, for inter-arrival times of less than 10 microseconds packet loss is higher than 25%,
since BMv2 cannot process high volumes of traffic. Experiments performed using a different packet
length show a very similar trend.
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5.2.2. Amazon Web Services (AWS) Virtual Machine Scenario Results

Figure 17 displays the throughput in Mbps measured by the custom C application in the AWS
VM scenario. The higher amount of CPUs and RAM memory available in this setup allows BMv2
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to reach much higher throughputs than in the local VM scenario: around 1 Gbps in the IP case
and around 400 Mbps in the EFCP case. In this experimental setup the differences between the IP
and the EFCP processing pipelines become more significant, highlighting the more complex (and
time-consuming) packet processing pipeline implemented in the EFCP case, and showing the limitations
of the BMv2 model (which again is not designed to play the role of a production-grade software switch).
As explained in Section 6, we will carry out a larger set of experiments with the hardware-based EFCP
pipeline implementation, which we expect to have the same performance as its IP counterpart.
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Packet loss, shown in Figure 18, is also lower in this configuration, dropping to 0 for packet
inter-arrival times of more than 5 microseconds.
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6. Next Steps: Complete RINA Interior Router Implementation

Having prototyped the RINA interior router’s data plane with the BMv2 model and its control
plane with simple programs capable of interacting with the P4 Runtime API, the authors are now ready
to proceed with the full implementation using real hardware. The target forwarding ASIC for the
implementation is the Barefoot Network’s (now Intel’s) Tofino, as used by the EdgeCore Wedge100BF-32X
(Edge-Core Networks, Taiwan) switch.
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6.1. Data Plane

The P4 RINA interior router program developed for the BMv2 target presented in this paper will
be adapted to the specifics of the Tofino mode, both to optimize and to introduce specific features,
such as Tofino’s fixed-function APIs.

6.2. Control Plane

The IPC Management and Layer Management components of IRATI [1]—an open-source RINA
implementation for Linux—will be integrated within the switch’s control plane software to provide
intelligent and dynamic forwarding decisions, as shown in Figure 19.

The layer management components of IRATI can be thought as “control plane components” in
user space that configure the “data plane” components implemented at the Linux kernel (where the
IPCP Data-Transfer components execute). The control plane components are: (i) the IPC Manager, a
daemon that oversees and configures the local instances of IPC Processes; and (ii) the layer management
components of the IPC Processes; namely the IPCP Layer Management as well as the Distributed
Fabric Daemon (DFD) and Shim DFD.

In IRATI the layer management components in the user space interact with the “data plane”
components at the Linux kernel via two dedicated Linux character devices:

• dev/irati-ctrl. The “management” API to create and configure the “data-transfer” components of
the IPCP (including forwarding tables).

• /dev/irati. The “I/O (Input/Output)” API to read and write packets addressed to or generated by
the layer management components of the IPCP.

The manipulation of such character devices is handled by the librina library, which provides
higher-level interfaces to other components of the IPC Manager Daemon and the IPCP Daemon. Hence,
by adapting librina to use the P4 Runtime API (for layer management packet I/O, pipeline instantiation
and forwarding table manipulation) instead of the Linux character devices, it will be possible to reuse
all remaining IPCP Daemon and IPC Manager Daemon code base.
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The DFD is a daemon that is part of the distributed network management application running
in the DC. Instead of a centralized Network Management System, a set of DFD instances—one per
physical server or network element—collaborate to carry out DC-wide resource discovery, allocation,
and monitoring tasks. For instance, DFDs create new DIFs on behalf of customer requests, and allocate
resources (memory, CPU, bandwidth) to them. To carry out these functions, the DFD has the following
main components: (i) DFD Coordinator, which manages the discovery of peer DFDs and the connectivity
to them; (ii) the Intent processor, which decomposes user requests into a set of DC resources that need
to be booked; (iii) the Composition Computation Engine (CCE), which computes and reserves the set
of resources required to fulfil a user request in a decentralized way; and (iv) the Device Abstraction
Layer (DAL), which allows the DFD to interact with the local managed resource. In the case of a RINA
interior router, the DFD DAL interacts with the IRATI layer management daemons.

6.3. Security

Data plane security components to carry out encryption of PDUs are out of the scope of the
initial implementation—since they require target-specific hardware support functions—but may be
considered to be future enhancements. In any case, RINA facilitates the efficiency of the implementation
and reusability of such components due to the fact that RINA security policies—e.g., encryption
algorithms—are applied to DIFs, not to specific protocols, hence different IPCPs may reuse the same
encryption module [24].

7. Conclusions

This work has proven the feasibility of implementing a RINA interior router (or target) with
the P4 programming language as well as a custom control plane to communicate the target with the
upper layers. To that end, we have evaluated and integrated different open-source tools. After initial
validation with the BMv2 software target, we conclude that P4 provides enough features to implement
a RINA interior router.

The authors are currently developing a full RINA control plane that allows the IRATI RINA
implementation [1] to communicate with the P4-enabled target via the P4Runtime API exposed by the
Stratum Network OS. The authors also plan to design and prototype a RINA border router, to verify the
impact of the P4 language limitations explained in Section 2 of this paper. We anticipate that, at least,
the language must support generating new packets, as well as better capabilities for inter-packet state
management to facilitate the implementation of flow and retransmission control policies.

Hence, next steps are to test the data plane on real white box hardware that incorporates a
P4-enabled ASIC such as Barefoot Tofino, and finalize the integration between the silicon target,
the control plane and the IRATI RINA implementation.
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Abbreviations

ACL Access Control List
API Application Programming Interface
ASIC Application Specific Integrated Circuit
AWS Amazon Web Services
BQE Buffering Queuing Engine
BMv2 Behavioral Model Version 2
BSP Board Support Package
CCE Composition Computation Engine
CLI Command Line Interface
CPU Central Processing Unit
DAL Device Abstraction Layer
DFD Distributed Fabric Daemon
DIF Distributed IPC Facility
DC Data Center
DPDK Data Plane Development Kit
ECN Explicit Congestion Notification
EFCP Error and Flow-Control Protocol

ENCQOR
Evolution of Networked Services Through a Corridor in Quebec and Ontario for Research
and Innovation

FIFO First in First Out
FPGA Field Programmable Gate Array
gRPC Google Remote Procedure Calls
gNMI gRPC Network Management Interface
gNOI gRPC Network Operations Interface
IP Internet Protocol
IPCP IPC Process
I/O Input Output
IRATI Investigating RINA as an Alternative to TCP/IP
JSON Java Script Object Notation
MA Management Agent
MPLS Multi-Protocol Label Switching
NIC Network Interface Card
NOS Network Operating System
ONIE Open Network Install Environment
ONL Open Network Linux
ONF Open Networking Foundation
OS Operating System
PDU Protocol Data Unit
PHAL Physical Hardware Access Layer
PoC Proof of Concept
RINA Recursive InterNetwork Architecture
RPC Remote Procedure Call
SDDC Software-Defined Data Center
SDE Software Development Environment
ToR Top of Rack
VLAN Virtual Local Area Network
VxLAN Virtual Extensible LAN
VM Virtual Machine
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