Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/10459.1/60511

Plant water potential improves prediction of empirical stomatal models
Anderegg, William R. L.; Wolf, Adam; Arango-Velez, Adriana; Choat, Brendan; Chmura, Daniel J.; Jansen, Steven; Kolb, Thomas; Li, Shan; Meinzer, Frederick; Pita, Pilar; Resco de Dios, Víctor; Sperry, John S.; Wolfe, Brett T.; Pacala, Stephen
Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes. Funding for this research was provided by NSF DEB EF-1340270 and the Climate Mitigation Initiative at the Princeton Environmental Institute, Princeton University. SL acknowledges financial support from the China Scholarship Council (CSC). VRD acknowledges funding from Ramón y Cajal fellowship (RYC-2012-10970). BTW was supported by the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. DJC acknowledges funding from the National Science Centre, Poland (NN309 713340). WRLA was supported in part by NSF DEB 1714972.
cc-by (c) Anderegg et al., 2017
http://creativecommons.org/licenses/by/4.0/
article
publishedVersion
Public Library of Science
         

Documentos con el texto completo de este documento

Ficheros Tamaño Formato Vista
026212.pdf 1.821 MB application/pdf Vista/Abrir

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a