dc.contributor.author
Miret, Josep M. (Josep Maria)
dc.contributor.author
Moreno Chiral, Ramiro
dc.contributor.author
Rio, Anna
dc.date.accessioned
2024-12-05T22:25:20Z
dc.date.available
2024-12-05T22:25:20Z
dc.date.issued
2012-01-25T11:57:51Z
dc.date.issued
2012-01-25T11:57:51Z
dc.identifier
https://doi.org/10.5565/PUBLMAT_PJTN05_07
dc.identifier
http://hdl.handle.net/10459.1/44519
dc.identifier.uri
http://hdl.handle.net/10459.1/44519
dc.description.abstract
Given an elliptic curve E and a finite subgroup G, V ́lu’s formulae concern to a separable isogeny IG : E → E ′ with kernel G. In particular, for a point P ∈ E these formulae express the first elementary symmetric polynomial on the abscissas of the points in the set P + G as the difference between the abscissa of IG (P ) and the first elementary symmetric polynomial on the abscissas of the nontrivial points of the kernel G. On the other hand, they express Weierstraß coefficients of E ′ as polynomials in the coefficients of E and two additional parameters: w0 = t and w1 = w. We generalize this by defining parameters wn for all n ≥ 0 and giving analogous formulae for all the elementary symmetric polynomials and the power sums on the abscissas of the points in P +G. Simultaneously, we obtain an efficient way of performing computations
concerning the isogeny when G is a rational group.
dc.publisher
Universitat Autònoma de Barcelona. Departament de Matemàtiques
dc.relation
Reproducció del document publicat a https://doi.org/10.5565/PUBLMAT_PJTN05_07
dc.relation
Reproducció del document publicat a http://ddd.uab.cat/record/52?ln=ca
dc.relation
Publicacions matemàtiques, 2007, vol. Extra, p. 147–163
dc.rights
(c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007
dc.rights
info:eu-repo/semantics/openAccess
dc.subject
Elliptic curve
dc.subject
Rational subgroup
dc.subject
Corbes el·líptiques
dc.subject
Nombres, Teoria dels
dc.subject
Anàlisi diofàntica
dc.title
Generalization of Vélu’s formulae for isogenies between elliptic curves