Volcanoes of l-isogenies of elliptic curves over finite fields: the case l=3

Author

Miret, Josep M. (Josep Maria)

Sadornil Renedo, Daniel

Tena Ayuso, Juan

Tomàs Cuñat, Rosa Ana

Valls Marsal, Magda

Publication date

2012-01-25T12:29:51Z

2012-01-25T12:29:51Z

2007



Abstract

This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.

Document Type

article
publishedVersion

Language

English

Subjects and keywords

Elliptic curves; Finite fields; Isogenies; Volcanoes; Corbes el·líptiques; Grups finits; Nombres, Teoria algebraica de

Publisher

Universitat Autònoma de Barcelona. Departament de Matemàtiques

Related items

Reproducció del document publicat a https://doi.org/10.5565/PUBLMAT_PJTN05_08

Reproducció del document publicat a http://ddd.uab.cat/record/52?ln=ca

Publicacions matemàtiques, 2007, vol. Extra, p. 165-180

Rights

(c) Universitat Autònoma de Barcelona. Departament de Matemàtiques, 2007

This item appears in the following Collection(s)