ENDORISK-2: A personalized Bayesian network for preoperative risk stratification in endometrial cancer, integrating molecular classification and preoperative myometrial invasion assessment

dc.contributor.author
Lombaers, Marike
dc.contributor.author
Reijnen, Casper
dc.contributor.author
Sprik, Ally
dc.contributor.author
Bretová, Petra
dc.contributor.author
Grube, Marcel
dc.contributor.author
Vrede, Stephanie
dc.contributor.author
Berg, Hege
dc.contributor.author
Asberger, Jasmin
dc.contributor.author
Colas, Eva
dc.contributor.author
Hausnerova, Jitka
dc.contributor.author
Huvila, Jutta
dc.contributor.author
Gil Moreno, Antonio
dc.contributor.author
Matias-Guiu, Xavier
dc.contributor.author
Simons, Michiel
dc.contributor.author
Snijders, Marc
dc.contributor.author
Visser, Nicole
dc.contributor.author
Kommoss, Stefan
dc.contributor.author
Weinberger, Vit
dc.contributor.author
Amant, Frederic
dc.contributor.author
Bronsert, Peter
dc.contributor.author
Haldorsen, Ingfrid
dc.contributor.author
Koskas, Martin
dc.contributor.author
Krakstad, Camilla
dc.contributor.author
Küsters Vandevelde, Heidi
dc.contributor.author
Mancebo, Gemma
dc.contributor.author
van der Putten, Louis
dc.contributor.author
de la Calle, Irene
dc.contributor.author
Lucas, Peter
dc.contributor.author
Hommersom, Arjen
dc.contributor.author
Pijnenborg, Johanna
dc.date.accessioned
2025-12-15T19:38:23Z
dc.date.available
2025-12-15T19:38:23Z
dc.date.issued
2025-11
dc.identifier
41161057
dc.identifier
https://doi.org/10.1016/j.ejca.2025.116058
dc.identifier
41161057
dc.identifier
1879-0852
dc.identifier
0959-8049
dc.identifier
https://hdl.handle.net/10459.1/469209
dc.identifier.uri
http://hdl.handle.net/10459.1/469209
dc.description.abstract
Background ENDORISK is a Bayesian network that can assist in preoperative risk estimation of lymph node metastasis (LNM) risk in endometrial cancer (EC) with consistent performance in external validations. To reflect state of the art care, ENDORISK was optimized by integrating molecular classification and preoperative assessment of myometrial invasion (MI). Methods Variables for POLE, MSI, and preoperative assessment of MI, either by expert transvaginal ultrasound or pelvic magnetic resonance imaging (MRI), were added to develop ENDORISK-2. The p53 biomarker, part of the molecular classification, was already included in ENDORISK. External validation of ENDORISK-2 for LNM prediction was performed in two independent cohorts from: Brno (CZ), (n = 581) and Tübingen (DE), (n = 247). Findings ENDORISK-2 yielded AUCs of 0·85 (95 % CI 0·80–0·90) (CZ) and 0·86 (95 % CI 0·77–0·96) (DE) for predicting LNM. In patients with low-grade histology, 83 % (CZ) and 89 % (DE) were estimated having less than 10 % risk of LNM, with false negative rates (FNR) of 4·3 % (CZ) and 2·2 % (DE). The previously defined set of minimally required variables, i.e.: preoperative tumor grade, three of the four immunohistochemical (IHC) markers, and one clinical marker, could be interchanged with the new variables, with comparable validation metrics, including AUC values of 0·79–0·87 for LNM prediction. Interpretation. Incorporation of molecular data and preoperative MI improved the flexibility of ENDORISK with comparable diagnostic accuracy for estimating LNM as when based on low-cost immunohistochemical biomarkers. In addition, the high diagnostic accuracy in patients with low-grade EC demonstrates how ENDORISK-2 could aid clinicians in identifying patients in whom surgical lymph node assessment may safely be omitted. These results underline its power for clinical use in both high and low resource countries.
dc.language
eng
dc.publisher
Elsevier
dc.relation
Reproducció del document publicat a https://doi.org/10.1016/j.ejca.2025.116058
dc.relation
European Journal of Cancer, 2025, vol. 231, 116058
dc.rights
cc-by, (c) Marike Lombaers et al., 2025
dc.rights
Attribution 4.0 International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by/4.0/
dc.subject
Bayesian network
dc.subject
Endometrial cancer
dc.subject
Lymph node metastasis
dc.subject
Molecular classification
dc.subject
Myometrial invasion
dc.subject
Risk estimation
dc.title
ENDORISK-2: A personalized Bayesian network for preoperative risk stratification in endometrial cancer, integrating molecular classification and preoperative myometrial invasion assessment
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)