dc.contributor.author
Guillén Gosálbez, Gonzalo
dc.contributor.author
Miró, Antoni
dc.contributor.author
Alves, Rui
dc.contributor.author
Sorribas Tello, Albert
dc.contributor.author
Jiménez Esteller, Laureano
dc.date.accessioned
2024-12-05T22:28:46Z
dc.date.available
2024-12-05T22:28:46Z
dc.date.issued
2015-06-02T11:05:51Z
dc.date.issued
2015-06-02T11:05:51Z
dc.identifier
https://doi.org/10.1186/1752-0509-7-113
dc.identifier
http://hdl.handle.net/10459.1/48285
dc.identifier.uri
http://hdl.handle.net/10459.1/48285
dc.description.abstract
Background: Recovering the network topology and associated kinetic parameter values from time-series data are
central topics in systems biology. Nevertheless, methods that simultaneously do both are few and lack generality.
Results: Here, we present a rigorous approach for simultaneously estimating the parameters and regulatory
topology of biochemical networks from time-series data. The parameter estimation task is formulated as a mixedinteger
dynamic optimization problem with: (i) binary variables, used to model the existence of regulatory interactions
and kinetic effects of metabolites in the network processes; and (ii) continuous variables, denoting metabolites
concentrations and kinetic parameters values. The approach simultaneously optimizes the Akaike criterion, which
captures the trade-off between complexity (measured by the number of parameters), and accuracy of the fitting.
This simultaneous optimization mitigates a possible overfitting that could result from addition of spurious regulatory
interactions.
Conclusion: The capabilities of our approach were tested in one benchmark problem. Our algorithm is able to
identify a set of plausible network topologies with their associated parameters.
dc.description.abstract
The authors acknowledges the financial support of the following institutions: Spanish Ministry of Education and Science (CTQ2009-14420-C02, CTQ2012-37039-C02, DPI2012-37154-C02-02, BFU2008-00196/BMC, BFU2010-17704, SGR2009-0809 and ENE 2011-28269-CO3-03), Spanish Ministry of External Affairs (projects PHB 2008-0090-PC), and European Commission (Marie Curie Actions - IAPP program - FP7/251298).
dc.publisher
BioMed Central
dc.relation
MICINN/PN2008-2011/CTQ2009-14420-C02
dc.relation
MICINN/PN2008-2011/CTQ2012-37039-C02
dc.relation
MICINN/PN2008-2011/DPI2012-37154-C02-02
dc.relation
MICINN/PN2008-2011/BFU2008-00196/BMC
dc.relation
MICINN/PN2008-2011/BFU2010-17704
dc.relation
Reproducció del document publicat a https://doi.org/10.1186/1752-0509-7-113
dc.relation
BMC Systems Biology, 2013, vol. 7, núm. 113, p. 1-11
dc.relation
info:eu-repo/grantAgreement/EC/FP7/251298
dc.rights
cc-by, (c) Guillén Gosálbez et al., 2013
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by/3.0/es/
dc.subject
Parameter estimation
dc.subject
Structure identification
dc.subject
Akaike criterion
dc.title
Identification of regulatory structure and kinetic parameters of biochemical networks via mixed-integer dynamic optimization