Influence of the settling of the resin beads on diffusion gradients in thin films measurements

Author

Jiménez-Piedrahita, Martín

Altier Infantes, Alexandra

Cecilia Averós, Joan

Rey-Castro, Carlos

Galceran i Nogués, Josep

Puy Llorens, Jaume

Publication date

2015-05-02

Abstract

Binding resin beads used in DGT (Diffusion Gradients in Thin films) tend to settle to one side of the resin during casting. This phenomenon might be relevant for metal accumulation when partially labile complexes dominate the metal speciation, especially after recognizing the important role played by complex dissociation in the resin domain. The influence of the inhomogeneity of the binding agent distribution on metal accumulation is here assessed by numerical simulation of DGT devices with binding beads in only one half of the resin disc, as a reasonable model of the standard resin discs. Results indicate that a decrease in mass accumulation of less than 13% can arise in these inhomogeneous devices (as compared with an ideal disc with homogeneous dispersion of the resin beads) when complexes with stability constant K<1E2m3 mol−1 (K<1E5 L mol−1) dominate the metal speciation. The loss increases as K increases, but the percentage of mass loss always remains lower than the volume fraction of resin disc without beads. For very labile or inert complexes, the impact of the inhomogeneous distribution of binding resin beads is negligible. As kinetic dissociation constants of complexes can be estimated from the distribution of the metal accumulation in a DGT device with a stack of two resin discs, the influence of the inhomogeneity on the recovered kinetic constant is also assessed. For the cases studied, the recovered kinetic dissociation constant, kd,recoveredkd,recovered, retains the correct order of magnitude, being related to the true kd by kd ≈ f −1 x kd(recovered), quite independently of K and kd values, being f the fraction of volume of the resin disc where resin beads are dispersed.


Financial support from the Spanish Ministry of Education and Science (Projects CTM2012-39183 and CTM2013-48967) is acknowledged. MJP acknowledges support from UdL and AA from MINECO BES-2013-065173.

Document Type

Article
Submitted version

Language

English

Subjects and keywords

Gomes i resines; Pel·lícules fines; Gums and resins; Thin films

Publisher

Elsevier

Related items

info:eu-repo/grantAgreement/MINECO//CTM2012-39183-C02-02/ES/FISICOQUIMICA DE LAS INTERACCIONES Y FENOMENOS DE TRANSPORTE A NIVEL COLOIDAL ENTRE IONES, MACROMOLECULAS Y NANOPARTICULAS DE INTERES AMBIENTAL/

info:eu-repo/grantAgreement/MINECO//CTM2013-48967-C2-1-P/ES/DESARROLLO, INTERPRETACION Y APLICACION DE TECNICAS EMERGENTES PARA DETERMINAR LA ESPECIACION Y LA DISPONIBILIDAD DE IONES INORGANICOS Y NANOPARTICULAS EN MEDIOS NATURALES/

info:eu-repo/grantAgreement/MINECO//BES-2013-065173/ES/BES-2013-065173/

Versió preprint del document publicat a: https://doi.org/10.1016/j.aca.2015.04.054

Analytica Chimica Acta, 2015, vol. 885, p. 148-155

Rights

(c) Elsevier, 2015

This item appears in the following Collection(s)