Trisection for supersingular genur 2 curves in characteristic 2

dc.contributor.author
Miret, Josep M. (Josep Maria)
dc.contributor.author
Pujolàs Boix, Jordi
dc.contributor.author
Thériault, Nicolas
dc.date.accessioned
2024-12-05T22:49:26Z
dc.date.available
2024-12-05T22:49:26Z
dc.date.issued
2015-11-09T13:24:46Z
dc.date.issued
2025-01-01
dc.date.issued
2014
dc.identifier
https://doi.org/10.3934/amc.2014.8.375
dc.identifier
1930-5346
dc.identifier
http://hdl.handle.net/10459.1/48930
dc.identifier.uri
http://hdl.handle.net/10459.1/48930
dc.description.abstract
By reversing reduction in divisor class arithmetic we provide efficient trisection algorithms for Jacobians of supersingular genus 2 curves over finite fields of characteristic 2. With our technique we obtain new results for these Jacobians: we show how to find their 3-torsion subgroup, we prove there is none with 3-torsion subgroup of rank 3 and we prove their the maximal 3-power order subgroup is isomorphic to either Z/3^vZ or (Z/3^{v/2}Z)^2 or (Z/3^{v/4}Z)^4, where v is the 3-adic valuation v3(#Jac(C)(F2^m}). Ours are the first trisection formulae available in literature.
dc.language
eng
dc.publisher
American Institute of Mathematical Sciences (AIMS)
dc.relation
Reproducció del document publicat a https://doi.org/10.3934/amc.2014.8.375
dc.relation
Advances in Mathematics of Communications, 2014, vol. 8, núm. 4, 375-387
dc.rights
(c) American Institute of Mathematical Sciences (AIMS), 2014
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.subject
Hyperelliptic curve
dc.subject
Supersingular
dc.subject
Genus 2
dc.title
Trisection for supersingular genur 2 curves in characteristic 2
dc.type
article
dc.type
publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)