This paper deals with the problem of location and existence of limit cycles for real planar polynomial differential systems. We provide a method to construct Poincaré-Bendixson regions by using transversal conics. We present several examples of known systems in the literature showing diferent features about limit cycles: hyperbolicity, Hopf bifurcation, sky-blue bifurcation, rotated vector fields, . . . for which the obtained Poincaré-Bendixson region allows to locate the limit cycles. Our method gives bounds for the bifurcation values of parametrical families of planar vector fields and intervals of existence of limit cycles.
The authors are partially supported by MINECO/FEDER grant number MTM2011-22877 and by an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204
Inglés
Transversal conic; Poincaré–Bendixson region; Limit cycle; Planar differential system
Elsevier
info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/
Versió postprint del document publicat a https://doi.org/10.1016/j.jmaa.2015.03.015
Journal of Mathematical Analysis and Applications, 2015, vol. 428, p. 563-586
cc-by-nc-nd (c) Elsevier, 2015
http://creativecommons.org/licenses/by-nc-nd/4.0/
Documents de recerca [17848]