In this paper we find an upper bound for the maximum number of limit cycles bifurcating from the periodic orbits of any planar polynomial quasi-homogeneous center, which can be obtained using first order averaging method. This result improves the upper bounds given in [7].
The first and second authors are partially supported by a MINECO/ FEDER grant number MTM2014-53703-P and by an AGAUR (Gener- alitat de Catalunya) grant number 2014SGR 1204. The third author is partially supported by a MINECO/ FEDER grant number MTM2008- 03437, by an AGAUR grant number 2009SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES-316338 and 318999
English
Quasi-homogeneous polynomial differential equations; Bifurcation of limit cycles; Quasi-homogeneous centers; Equacions diferencials ordinàries
Elsevier
MINECO/PN2013-2016/MTM2014-53703-P
Versió postprint del document publicat a https://doi.org/10.1016/j.jde.2015.08.014
Journal of Differential Equations, 2015, vol. 259, p. 7135-7160
info:eu-repo/grantAgreement/EC/FP7/318999
info:eu-repo/grantAgreement/EC/FP7/316338
cc-by-nc-nd (c) Elsevier, 2015
http://creativecommons.org/licenses/by-nc-nd/4.0/
Documents de recerca [17848]