In this paper we find necessary and sufficient conditions in order that a planar quasi-homogeneous polynomial differential system has a polynomial or a rational first integral. We also prove that any planar quasi-homogeneous polynomial differential system can be transformed into a differential system of the form u˙=uf(v), v˙=g(v) with f(v) and g(v) polynomials, and vice versa.
The first and second authors are partially supported by a MICINN/ FEDER grant number MTM2011-22877 and by a AGAUR (Generalitat de Catalunya) grant number 2009SGR 381. The third author is partially supported by a MICINN/ FEDER grant number MTM2008-03437, by a AGAUR grant number 2009SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES- 316338 and 319888
Anglès
Integrability problem; Polynomial first integral; Rational first integral; Quasi-homogeneous polynomial differential equations; Geometria diferencial; Equacions diferencials
American Institute of Mathematical Sciences
info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/
Reproducció del document publicat a https://doi.org/10.3934/dcds.2013.33.4531
Discrete and Continuous Dynamical Systems, 2013, vol. 33, num. 10, p. 4531-4547
info:eu-repo/grantAgreement/EC/FP7/316338
info:eu-repo/grantAgreement/EC/FP7/319888
(c) American Institute of Mathematical Sciences, 2013
Documents de recerca [17848]