Author

Giné, Jaume

Grau Montaña, Maite

Llibre, Jaume

Publication date

2016-02-04T13:29:09Z

2016-02-04T13:29:09Z

2013

2016-02-04T13:14:14Z



Abstract

Recently some extensions of the classical Darboux integrability theory to autonomous and non-autonomous polynomial vector fields were completed. The classical Darboux integrability theory and its recent extensions are based on the existence of algebraic invariant hypersurfaces. However the algebraicity of the invariant hypersurfaces is not necessary and the unique necessary condition is the algebraicity of the cofactors associated to them. In this paper a more general extension of the classical Darboux integrability theory is established.


The first and second authors are partially supported by a MICINN/ FEDER grant number MTM2011-22877 and by a AGAUR (General- itat de Catalunya) grant number 2009SGR 381. The third author is partially supported by a MICINN/ FEDER grant number MTM2008- 03437, by a AGAUR grant number 2009SGR 410, by ICREA Academia and by FP7-PEOPLE-2012-IRSES numbers 316338 and 318999

Document Type

article
acceptedVersion

Language

English

Subjects and keywords

Nonlinear differential equations; Integrability problem; First integral; Invariant curves; Exponential factors; Equacions diferencials no lineals

Publisher

IOP Publishing

Related items

info:eu-repo/grantAgreement/MICINN//MTM2011-22877/ES/BIFURCACIONES, INTEGRABILIDAD Y PROPIEDADES CUALITATIVAS DE FAMILIAS DE CAMPOS VECTORIALES/

Reproducció del document publicat a http://iopscience.iop.org/article/10.1088/0951-7715/26/8/2221/meta

Nonlinearity, 2013, vol. 26, p. 2221-2229

info:eu-repo/grantAgreement/EC/FP7/318999

info:eu-repo/grantAgreement/EC/FP7/316338

Rights

(c) IOP Publishing, 2013

This item appears in the following Collection(s)