Engineering metabolic pathways in plants by multigene transformation

Author

Zorrilla López, Uxue

Masip Vilà, Gemma

Arjó Pont, Gemma

Bai, Chao

Banakar, Raviraj

Bassie Rene, Ludovic

Berman Quintana, Judit

Farré Martinez, Gemma

Miralpeix i Anglada, Bruna

Pérez Massot, Eduard

Sabalza Gallués, Maite

Sanahuja Solsona, Georgina

Vamvaka, Evangelia

Twyman, Richard M.

Christou, Paul

Zhu, Changfu

Capell Capell, Teresa

Publication date

2016-02-05T12:46:54Z

2016-02-05T12:46:54Z

2013



Abstract

Metabolic engineering in plants can be used to increase the abundance of specific valuable metabolites, but single-point interventions generally do not improve the yields of target metabolites unless that product is immediately downstream of the intervention point and there is a plentiful supply of precursors. In many cases, an intervention is necessary at an early bottleneck, sometimes the first committed step in the pathway, but is often only successful in shifting the bottleneck downstream, sometimes also causing the accumulation of an undesirable metabolic intermediate. Occasionally it has been possible to induce multiple genes in a pathway by controlling the expression of a key regulator, such as a transcription factor, but this strategy is only possible if such master regulators exist and can be identified. A more robust approach is the simultaneous expression of multiple genes in the pathway, preferably representing every critical enzymatic step, therefore removing all bottlenecks and ensuring completely unrestricted metabolic flux. This approach requires the transfer of multiple enzyme-encoding genes to the recipient plant, which is achieved most efficiently if all genes are transferred at the same time. Here we review the state of the art in multigene transformation as applied to metabolic engineering in plants, highlighting some of the most significant recent advances in the field.


Research at the Universitat de Lleida is supported by the Ministerio de Ciencia e Innovación (grants no. BFU2007-61413, BIO2011-23324, BIO02011-22525, PIM2010PKB-0074, Acciones complementarias BIO2007-30738-E and BIO2011-22525, and the Centre CONSOLIDER on Agrigenomics), the European Union Framework 7 Program (SmartCell Integrated Project 222716), the European Research Council IDEAS Advanced Grant Program (BIOFORCE) (to PC), the European Cooperation in Science and Technology (COST Action FA0804), and RecerCaixa.

Document Type

article
publishedVersion

Language

English

Subjects and keywords

Direct DNA transfer; Multigene transformation; Metabolic pathway; Genetic engineering; Enginyeria genètica; Genètica vegetal

Publisher

University of the Basque Country Press

Related items

info:eu-repo/grantAgreement/MEC//BFU2007-61413/ES/

info:eu-repo/grantAgreement/MICINN//BIO2011-23324/ES/ESTUDIO DE LA VIABILIDAD DEL AUMENTO DE LA CAPACIDAD FOTOSINTETICA DEL ARROZ SOBREPASANDO LA TRANSICION DE C3 A C4 MEDIANTE INGENIERIA GENETICA/

info:eu-repo/grantAgreement/MICINN//BIO2011-22525/ES/INVESTIGACION DEL MECANISMO DE ACUMULACION DE CAROTENOIDES EN EL ENDOSPERMO DE ARROZ/

info:eu-repo/grantAgreement/MICINN//PIM2010PKB-00746/ES/

info:eu-repo/grantAgreement/MEC//BIO2007-30738-E/ES/NOVEL ANTIGEN DELIVERY FOR SUSTAINED MUCOSAL PROTECTION AGAINST HIV-1/

Reproducció del document publicat a: https://doi.org/10.1387/ijdb.130162pc

International Journal of Developmental Biology, 2013, vol.57, núm. 6, 7, 8, p. 565-576

info:eu-repo/grantAgreement/EC/FP7/232933

info:eu-repo/grantAgreement/EC/FP7/222716

Rights

(c) University of the Basque Country Press, 2013

This item appears in the following Collection(s)