Auto-Mutual Information Function for Predicting Pain Responses in EEG Signals during Sedation

dc.contributor.author
Melia, Umberto
dc.contributor.author
Vallverdú, Montserrat
dc.contributor.author
Jospin, M.
dc.contributor.author
Jensen, E. W.
dc.contributor.author
Valencia, J. F.
dc.contributor.author
Clarià Sancho, Francisco
dc.contributor.author
Gambus, P. L.
dc.contributor.author
Caminal Magrans, Pere
dc.date.accessioned
2024-12-05T21:34:48Z
dc.date.available
2024-12-05T21:34:48Z
dc.date.issued
2016-03-16T10:53:07Z
dc.date.issued
2025-01-01
dc.date.issued
2014-01
dc.date.issued
2016-03-16T10:48:09Z
dc.identifier
https://doi.org/10.1007/978-3-319-00846-2_154
dc.identifier
1680-0737
dc.identifier
http://hdl.handle.net/10459.1/56722
dc.identifier.uri
http://hdl.handle.net/10459.1/56722
dc.description.abstract
The level of sedation in patients undergoing medical procedures evolves continuously, such as the effect of the anesthetic and analgesic agents is counteracted by pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work was to analyze the capability of prediction of nociceptive responses based on the auto-mutual information function (AMIF). AMIF measures were calculated on EEG signal in order to predict the presence or absence of the nociceptive responses to endoscopy tube insertion during sedation in endoscopy procedure. Values of prediction probability of Pk above 0.80 and percentages of sensitivity and specificity above 70% and 70% respectively were achieved combining AMIF with power spectral density and concentrations of remifentanil.
dc.description.abstract
This work was supported within the framework of the CICYT grant TEC2010-20886 and the Research Fellowship Grant FPU AP2009-0858 from the Spanish Government.
dc.format
application/pdf
dc.language
eng
dc.publisher
Springer
dc.relation
info:eu-repo/grantAgreement/MICINN//TEC2010-20886-C02-01/ES/HERRAMIENTAS DE PROCESADO DE SEÑAL Y BIOINFORMATICA PARA LA EVALUACION MULTINIVEL DE DESORDENES CARDIOVASCULARES Y LA MONITORIZACION DE ANESTESIA: APROXIMACION FENOTIPICA/
dc.relation
info:eu-repo/grantAgreement/MICINN//TEC2010-20886-C02-02/ES/HERRAMIENTAS DE PROCESADO DE SEÑAL Y BIOINFORMATICA PARA LA EVALUACION MULTINIVEL DE DESORDENES CARDIOVASCULARES Y LA MONITORIZACION DE ANESTESIA: APROXIMACION OMICA/
dc.relation
Reproducció del document publicat a https://doi.org/10.1007/978-3-319-00846-2_154
dc.relation
Ifmbe Proceedings, 2014, vol. 41, num. 2014, p. 623-626
dc.rights
(c) Springer, 2014
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.subject
Ingeniería biomédica
dc.subject
Procesado de señales biomédicas
dc.subject
Enginyeria biomèdica
dc.subject
Enginyeria biomèdica
dc.title
Auto-Mutual Information Function for Predicting Pain Responses in EEG Signals during Sedation
dc.type
article
dc.type
publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)