Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal PSA data

Autor/a

Serrat, Carles

Rué i Monné, Montserrat

Armero, Carmen

Piulachs, Xavier

Perpiñán, Hèctor

Forte, Anabel

Páez, Álvaro

Gómez, Guadalupe

Fecha de publicación

2016-05-05T08:50:04Z

2025-01-01

2014



Resumen

The paper describes the use of frequentist and Bayesian shared-parameter joint models of longitudinal measurements of prostate specific antigen (PSA) and the risk of prostate cancer (PCa). The motivating dataset corresponds to the screening arm of the Spanish branch of the European Randomized Screening for Prostate Cancer (ERSPC) study. The results show that PSA is highly associated with the risk of being diagnosed with PCa and that there is an age-varying effect of PSA on PCa risk. Both the frequentist and Bayesian paradigms produced very close parameter estimates and subsequent 95% confidence and credibility intervals. Dynamic estimations of disease-free probabilities obtained using Bayesian inference highlight the potential of joint models to guide personalized risk-based screening strategies.


This paper has been partially supported by research grants MTM2012-38067-C02-01 and MTM2010-19528 from the Spanish Ministry of Economy and Competitiveness and the Spanish Ministry of Education and Science, respectively.

Tipo de documento

article
publishedVersion

Lengua

Inglés

Materias y palabras clave

Joint models; Linear mixed models; Prostate cancer screening

Publicado por

Taylor & Francis

Documentos relacionados

MICINN/PN2008-2011/MTM2012-38067-C02-01

MICINN/PN2008-2011/MTM2010-19528

Reproducció del document publicat a https://doi.org/10.1080/02664763.2014.999032

Journal of Applied Statics, 2015, vol. 42, núm. 6

Derechos

(c) Taylor & Francis, 2015

Este ítem aparece en la(s) siguiente(s) colección(ones)