Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins

Autor/a

Irazusta, Verónica Patricia

Moreno Cermeño, Armando J.

Cabiscol Català, Elisa

Ros Salvador, Joaquim

Tamarit Sumalla, Jordi

Data de publicació

2016-06-06T10:22:13Z

2025-01-01

2008



Resum

Iron accumulation has been associated with several pathological conditions such as Friedreich ataxia. This human disorder is caused by decreased expression of frataxin. Iron-overload triggers oxidative stress, but the main targets of such stress are not known. In yeast cells lacking the frataxin ortholog YFH1, we have identified a set of 14 carbonylated proteins, which include mitochondrial ATP synthase, phosphoglycerate kinase, pyruvate kinase, and molecular chaperones. Interestingly, most of the target proteins are magnesium- and/or nucleotide-binding proteins. This key feature leads us to postulate that when iron accumulates, chelatable iron replaces magnesium at the corresponding metal-binding site, promoting selective damage to these proteins. Consistent with this hypothesis, in vitro experiments performed with pure pyruvate kinase and phosphoglycerate kinase showed that oxidation of these proteins can be prevented by magnesium and increased by the presence of ATP. Also, chelatable iron, which forms complexes with nucleotides, showed a sevenfold increase in Δyfh1 cells. Moreover, lowering chelatable iron in Δyfh1 cells by desferrioxamine prevented enzyme inactivation. As a general conclusion, we propose that magnesium bound to proteins is replaced by chelatable iron when this metal accumulates. This mechanism explains selective protein oxidation and provides clues for better understanding of iron-overloading pathologies.


This work is supported by the Friedreich’s Ataxia Research Alliance (Arlington, VA, USA) and Grants BFU2004-00593/BMC and CSD2007-00020 Consolider- Ingenio 2010 from the Ministerio de Educación y Ciencia (Spain). V.I. is the recipient of a Ph.D. fellowship from the Generalitat de Catalunya.

Tipus de document

article
publishedVersion

Llengua

Anglès

Matèries i paraules clau

Iron-overload; Protein carbonylation; Metal-catalyzed oxidation; Frataxin

Publicat per

Elsevier

Documents relacionats

info:eu-repo/grantAgreement/MIECI//BFU2004-00593%2FBMC/ES/

Reproducció del document publicat a https://doi.org/10.1016/j.freeradbiomed.2008.01.014

Free Radical Biology and Medicine, 2008, vol. 44, núm. 9, p. 1712-1723

Drets

(c) Elsevier Inc., 2008

Aquest element apareix en la col·lecció o col·leccions següent(s)