Multiple Sequence Alignment (MSA) constitutes an extremely powerful tool for important biological applications such as phylogenetic analysis, identification of conserved motifs and domains and structure prediction. In spite of the improvement in speed and accuracy introduced by MSA programs, the computational requirements for large-scale alignments requires high-performance computing and parallel applications. In this paper we present an improvement to a parallel implementation of T-Coffee, a widely used MSA package. Our approximation resolves the bottleneck of the progressive alignment stage on MSA. This is achieved by increasing the degree of parallelism by balancing the guide tree that drives the progressive alignment process. The experimental results show improvements in execution time of over 68% while maintaining the biological accuracy.
This work was supported by the Ministry of Education and Science of Spain under Contract TIN2008-05913 and Consolider CSD2007-00050.
Inglés
T-Coffee; Multiple Sequence Alignment; Parallelism
Springer Verlag
MICINN/PN2008-2011/TIN2008-05913
Reproducció del document publicat a https://doi.org/10.1007/s11227-009-0359-5
Journal of Supercomputing, 2011, vol. 58, núm. 2, p. 186-194
(c) Springer Science+Business Media, LLC, 2011
Documents de recerca [17848]