Autor/a

Giacomini, Héctor

Giné, Jaume

Grau Montaña, Maite

Fecha de publicación

2016-09-14T08:51:56Z

2016-09-14T08:51:56Z

2007



Resumen

We study a planar polynomial differential system, given by . We consider a function , where gi(x) are algebraic functions of with ak(x) and algebraic functions, A0(x,y) and A1(x,y) do not share any common factor, h2(x) is a rational function, h(x) and h1(x) are functions of x with a rational logarithmic derivative and . We show that if I(x,y) is a first integral or an integrating factor, then I(x,y) is a Darboux function. A Darboux function is a function of the form , where fi and h are polynomials in and the λi's are complex numbers. In order to prove this result, we show that if g(x) is an algebraic particular solution, that is, if there exists an irreducible polynomial f(x,y) such that f(x,g(x)) ≡ 0, then f(x,y) = 0 is an invariant algebraic curve of the system. In relation with this fact, we give some characteristics related to particular solutions and functions of the form I(x,y) such as the structure of their cofactor. Moreover, we consider A0(x,y), A1(x,y) and h2(x) as before and a function of the form . We show that if the derivative of Φ(x,y) with respect to the flow is well defined over {(x,y): A0(x,y) = 0} then Φ(x,y) gives rise to an exponential factor. This exponential factor has the form exp {R(x,y)} where and with B1/B0 a function of the same form as h2A1/A0. Hence, exp {R(x,y)} factorizes as the product Φ(x,y) Ψ(x,y), for Ψ(x,y): = exp {B1/B0.


The second and third authors are partially supported by a MCYT grant number BFM 2002- 04236-C02-01. The second author is also partially supported by DURSI of Government of Catalonia “Distinció de la Generalitat de Catalunya per a la promoció de la recerca universitària”.

Tipo de documento

article
submittedVersion

Lengua

Inglés

Materias y palabras clave

Planar polynomial differential system; Algebraic function; Invariant algebraic curve; Integrability; Equacions diferencials; Àlgebra

Publicado por

Cambridge University Press

Documentos relacionados

info:eu-repo/grantAgreement/MICYT//BFM2002-04236-C02-01/ES/

Versió preprint del document publicat a https://doi.org/10.1017/S0305004107000497

Mathematical Proceedings of the Cambridge Philosophical Society, 2007, vol. 143, núm. 2, p. 487-508

http://arxiv.org/abs/math/0506036

Derechos

(c) Cambridge Philosophical Society 2007

Este ítem aparece en la(s) siguiente(s) colección(ones)