Autor/a

Artès, Tomás

Cardil Forradellas, Adrián

Cortés, Ana

Margalef, Tomàs

Molina Terrén, Domingo

Pelegrín, Lucas

Ramírez, Joaquín

Fecha de publicación

2016-10-14T10:35:02Z

2016-10-14T10:35:02Z

2015



Resumen

International Conference on Computational Science, ICCS 2015 – Computational Science at the Gates of Nature


Forest fire devastate every year thousand of hectares of forest around the world. Fire behavior prediction is a useful tool to aid coordination and management of human and mitigation resources when fighting against these kind of hazards. Any fire spread forecast system requires to be fitted with different kind of data with a high degree of uncertainty, such as for example, me- teorological data and vegetation map among others. The dynamics of this kind of phenomena requires to develop a forecast system with the ability to adapt to changing conditions. In this work two different fire spread forecast systems based on the Dynamic Data Driven Application paradigm are applied and an alternative approach based on the combination of both predictions is presented. This new method uses the computational power provided by high performance computing systems to deliver the predictions under strict real time constraints.


This research has been supported by the Ministerio de Economía y Competitividad (MECSpain) under contract TIN2011-28689-C02-01 and the Catalan government under grant 2014- SGR-576.

Tipo de documento

article
publishedVersion

Lengua

Inglés

Materias y palabras clave

Dynamic data driven; Parallel computing; Data uncertainty

Publicado por

Elsevier

Documentos relacionados

MICINN/PN2008-2011/TIN2011-28689-C02-01

Reproducció del document publicat a https://doi.org/10.1016/j.procs.2015.05.294

Procedia Computer Science, 2015, vol. 51, p. 1623-1632

Derechos

cc-by-nc-nd (c) Artès et al., 2016

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Este ítem aparece en la(s) siguiente(s) colección(ones)