Bai, Chao
Rivera Vélez, Sol Maiam
Medina Piles, Vicente
Alves, Rui
Vilaprinyo Terré, Ester
Sorribas Tello, Albert
Canela i Garayoa, Ramon
Capell Capell, Teresa
Sandmann, Gerhard
Christou, Paul
Zhu, Changfu
2016-10-24T12:05:25Z
2016-10-24T12:05:25Z
2025-01-01
2014
We have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well-characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized β–carotene ketolase gene optimized for maize codon usage, and a wild-type Arabidopsis thaliana ortholog of the cauliflower Orange gene. In contrast to previous reports (Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O'Neill, J. and Li, L. (2008) J. Exp. Bot. 59, 213–223; Lu, S., Van Eck, J., Zhou, X., Lopez, A.B., O'Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Küpper, H., Earle, E.D., Cao, J. and Li, L. (2006) Plant Cell 18, 3594–3605), we found that the wild-type Orange allele was sufficient to induce chromoplast differentiation. We also found that chromoplast differentiation was induced by increasing the availability of precursors and thus driving flux through the pathway, even in the absence of Orange. Remarkably, we found that diverse endosperm-specific promoters were highly active in rice callus despite their restricted activity in mature plants. Our callus system provides a unique opportunity to predict the effect of metabolic engineering in complex pathways, and provides a starting point for quantitative modeling and the rational design of engineering strategies using synthetic biology. We discuss the impact of our data on analysis and engineering of the carotenoid biosynthesis pathway.
This study was supported by the Ministerio de Ciencia e Innovaci _on, Spain (AGL2010-15691, BFU2010-17704 and BIO2011-22525), the Generalitat de Catalunya (2009SGR809), and a European Research Council Advanced Grant (BIOFORCE). We thank Veronica Teixido and Jorge Comas (Department Cie` ncies Me` diques Ba` siques, Universitat de Lleida & Institut de Recerca Biomèdica de Lleida Edifici Recerca Biomèdica I, Avenida Alcalde Rovira Roure 80, 25198 Lleida, Spain) for assistance with the ImageJ analysis.
Inglés
Carotenoids; Gene function; Rice (Oryza sativa); 1–deoxy-D–xylulose 5–phosphate synthase; b-carotene ketolase; Technical advance
Wiley
info:eu-repo/grantAgreement/MICINN//AGL2010-15691/ES/CARACTERIZACION DE LA RESPUESTA A LA INFECCION VIRAL DE PLANTAS DE TOMATE Y MAIZ TRATADAS CON ELICITORES DE RESISTENCIA SISTEMICA ADQUIRIDA E INDUCIDA/
info:eu-repo/grantAgreement/MICINN//BFU2010-17704/ES/METRES (METABOLIC RECONSTRUCTION SERVER DESARROLLO Y APLICACION EN EN ESTUDIO DE PRINCIPIOS DE DISEÑO BIOLOGICO/
info:eu-repo/grantAgreement/MICINN//BIO2011-22525/ES/INVESTIGACION DEL MECANISMO DE ACUMULACION DE CAROTENOIDES EN EL ENDOSPERMO DE ARROZ/
Reproducció del document publicat a https://doi.org/10.1111/tpj.12384
The Plant Journal, 2014, vol. 77, núm. 3, p. 464–475
info:eu-repo/grantAgreement/EC/FP7/232933
(c) Chao Bai et al., 2013
(c) Wiley. The Plant Journal, 2013
Documents de recerca [17848]