Center conditions for nilpotent cubic systems using Cherkas method

dc.contributor.author
Giné, Jaume
dc.date.accessioned
2024-12-05T22:44:42Z
dc.date.available
2024-12-05T22:44:42Z
dc.date.issued
2016-11-04T15:44:29Z
dc.date.issued
2018-12-01T23:29:17Z
dc.date.issued
2016
dc.date.issued
2016-11-04T15:44:30Z
dc.identifier
https://doi.org/10.1016/j.matcom.2016.04.002
dc.identifier
0378-4754
dc.identifier
http://hdl.handle.net/10459.1/58393
dc.identifier.uri
http://hdl.handle.net/10459.1/58393
dc.description.abstract
In this work we study the center problem of a cubic polynomial differential system with nilpotent linear part. The analysis is based on the application of the Cherkas method to the Takens normal form. The study needs many computations, which have been verified with the help of one algebraic manipulator and the extensive use of a computer algebra system as Singular.
dc.description.abstract
The author is partially supported by a MINECO/FEDER grant number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204
dc.format
application/pdf
dc.language
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/grantAgreement/MINECO//MTM2014-53703-P/ES/METODOS CUALITATIVOS EN SISTEMAS DIFERENCIALES CONTINUOS/
dc.relation
Versió postprint del document publicat a: https://doi.org/10.1016/j.matcom.2016.04.002
dc.relation
Mathematics and Computers in Simulation, 2016, vol. 129, p. 1-9
dc.rights
cc-by-nc-nd (c) Elsevier, 2016
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.ca
dc.subject
Nilpotent center problem
dc.subject
Analytic integrability
dc.subject
Cherkas method
dc.subject
Decomposition in prime ideals
dc.subject
Takens normal form
dc.subject
Matemàtica
dc.subject
Mathematics
dc.title
Center conditions for nilpotent cubic systems using Cherkas method
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)