Autor/a

García, I. A. (Isaac A.)

Shafer, Douglas S.

Fecha de publicación

2016-11-08T13:57:41Z

2016-04-01

2016-11-08T13:57:42Z



Resumen

In this work we extend techniques based on computational algebra for bounding the cyclicity of nondegenerate centers to nilpotent centers in a natural class of polynomial systems, those of the form $\dot x = y + P_{2m + 1}(x,y)$, $\dot y = Q_{2m + 1}(x,y)$, where $P_{2m+1}$ and $Q_{2m+1}$ are homogeneous polynomials of degree $2m + 1$ in $x$ and $y$. We use the method to obtain an upper bound (which is sharp in this case) on the cyclicity of all centers in the cubic family and all centers in a broad subclass in the quintic family.


The first author is partially supported by a MICINN grant number MTM2011-22877 and by a CIRIT grant number 2014 SGR 1204.

Tipo de documento

Artículo
Versión aceptada

Lengua

Inglés

Materias y palabras clave

Cyclicity; Limit cycle; Nilpotent center; Matemàtica; Mathematics

Publicado por

American Institute of Mathematical Sciences

Documentos relacionados

MICINN/PN2008-2011/MTM2011-22877

Versió postprint del document publicat a https://doi.org/10.3934/dcds.2016.36.2497

Discrete and Continuous Dynamical Systems Series A, 2016, vol. 36, núm. 5, p. 2497-2520

Derechos

(c) American Institute of Mathematical Sciences, 2016

Este ítem aparece en la(s) siguiente(s) colección(ones)