In this paper we study the center problem for polynomial differential systems and we prove that any center of an analytic differential system is analytically reducible. x˙=y,y˙=P0(x)+P1(x)y+P2(x)y2, We also study the centers for the Cherkas polynomial differential systems where Pi(x) are polynomials of degree n, P0(0)=0 and P′0(0)<0. Computing the focal values we find the center conditions for such systems for degree 3, and using modular arithmetics for degree 4. Finally we do a conjecture about the center conditions for Cherkas polynomial differential systems of degree n.
The first author is partially supported by a MINECO/FEDER grant number MTM2014-53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR 1204. The second author is partially supported by a MINECO grant MTM2013-40998-P, an AGAUR grant 2014SGR 568, and two grants FP7-PEOPLE-2012-IRSES numbers 316338 and 318999.
Inglés
Center problem; Analytic integrability; Polynomial Cherkas differential systems
Bolyai Institute, University of Szeged
Hungarian Academy of Sciences
info:eu-repo/grantAgreement/MINECO//MTM2014-53703-P/ES/METODOS CUALITATIVOS EN SISTEMAS DIFERENCIALES CONTINUOS/
info:eu-repo/grantAgreement/MINECO//MTM2013-40998-P/ES/ALGUNOS ASPECTOS DE LA DINAMICA GLOBAL DE LOS SISTEMAS DIFERENCIALES: INTEGRABILIDAD, SOLUCIONES PERIODICAS Y BIFURCACIONES/
Reproducció del document publicat a https://doi.org/10.14232/ejqtde.2016.1.49
Electronic Journal of Qualitative Theory of Differential Equations, 2016, núm. 49, p. 1–10
info:eu-repo/grantAgreement/EC/FP7/316338
info:eu-repo/grantAgreement/EC/FP7/318999
cc-by (c) Giné, Jaume et al., 2016
https://creativecommons.org/licenses/by/4.0/deed.es_ES
Documents de recerca [17848]