dc.contributor.author
Castillo Díaz, Jorge del
dc.contributor.author
Comas Rodríguez, Carles
dc.contributor.author
Voltas Velasco, Jordi
dc.contributor.author
Ferrio Díaz, Juan Pedro
dc.date.accessioned
2024-12-05T22:33:24Z
dc.date.available
2024-12-05T22:33:24Z
dc.date.issued
2017-03-31T09:28:28Z
dc.date.issued
2018-10-15T22:26:53Z
dc.date.issued
2016-12-15
dc.date.issued
2017-03-31T09:28:29Z
dc.identifier
https://doi.org/10.1016/j.foreco.2016.10.025
dc.identifier
http://hdl.handle.net/10459.1/59416
dc.identifier.uri
http://hdl.handle.net/10459.1/59416
dc.description.abstract
Understanding inter- and intra-specific plant interactions and competition over water is challenging because of the lack of effective approaches for accessing and monitoring root distribution and activity. In this context, stable isotopes are excellent co-hydrological tracers that allow characterizing the
dynamics of water uptake patterns in trees and shrubs. Here, we studied biotic interactions for wateruptake between two typical Mediterranean tree species, Aleppo pine (Pinus halepensis ) and holm oak (
Quercus ilex), coexisting in a mixed forest. We measured stable isotope composition (
d1 8O and d2H) of xylem water in all trees found in the studied stand during one growing season, covering an exception-
ally long summer drought and subsequent recovery. We applied point-process statistics together with stand density information to evaluate tree-to-tree interactions for water use. In pines, we observed a clear uncoupling between soil and xylem water isotope composition after two months of persistent drought. Conversely, the isotope composition of xylem water in oaks tracked observed changes in the soil during the first two months of drought, but began to depart from soil values after three months. These
results suggest that during drought the oaks were able to keep active for longer using alternative soil water sources, not available for the pines. Point-process statistics revealed more positive isotope compo-
sitions at distances below 4–6 m, but only between con-specific individuals (i.e. pine-pine, oak-oak). These intra-specific responses were first seen in the pines (after two months of drought) and subse-
quently in oaks (after three months), coinciding with the onset of soil-xylem uncoupling for each species. On the other hand, the isotope composition of individual oaks decreased with increasing neighbor pine density, but increased in response to oak density. Conversely, the pines showed more positive values with increasing oak density. Our results suggest that the use of shallow water in oaks is limited by the pres-
ence of pines, which force them to shift to deep-soil water use, whereas pines have more restricted access to deep water in the presence of oaks, leading to more positive isotope values. According to the dynamics
of interaction patterns, we conclude that inter-specific differences in pine-oak mixed forests hold two components: a static, spatial component determined by root distribution, and a dynamic, physiological
component related to water uptake capacity within the soil profile.
dc.description.abstract
We acknowledge the financial support by the Spanish Ministry of Economy and Competitiveness, through a FPI fellowship to J.d.C. (BES-2010-0324572-01), a contract through the Ramón y Cajal programme to J.P.F. (RYC-2008-02050), and the research project
CGL2011-26654.
dc.format
application/pdf
dc.relation
MICINN/PN2008-2011/CGL2011-26654
dc.relation
Versió postprint del document publicat a: https://doi.org/10.1016/j.foreco.2016.10.025
dc.relation
Forest Ecology and Management, 2016, vol. 382, p. 214-224
dc.rights
cc-by-nc-nd, (c) Elsevier, 2016
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Plant-to-plant interactions
dc.subject
Point patterns
dc.subject
Pinus halepensis
dc.title
Dynamics of competition over water in a mixed oak-pine Mediterranean forest: spatio-temporal and physiological components
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion