dc.contributor.author
Giné, Jaume
dc.contributor.author
Llibre, Jaume
dc.date.accessioned
2024-12-05T21:57:36Z
dc.date.available
2024-12-05T21:57:36Z
dc.date.issued
2017-10-30T09:29:49Z
dc.date.issued
2017-10-30T09:29:49Z
dc.identifier
https://doi.org/10.1007/s00033-011-0116-5
dc.identifier
http://hdl.handle.net/10459.1/60389
dc.identifier.uri
http://hdl.handle.net/10459.1/60389
dc.description.abstract
Under very general assumptions we prove that the planar differential systems having a first integral are essentially the linear differential systems u˙ = u, ˙v = v. Additionally such systems always have a Lie symmetry. We improve these results for polynomial differential systems defined in R2 or C2.
dc.description.abstract
The first author is partially supported by a MCYT/FEDER grant number MTM2008-00694 and by a CIRIT grant number 2005SGR 00550. The second author is partially supported by a MCYT/FEDER grant number MTM2008-03437 and by a CIRIT grant number 2005SGR 00550.
dc.publisher
Springer Verlag
dc.relation
MICINN/PN2008-2011/MTM2008-00694
dc.relation
MICINN/PN2008-2011/MTM2008-03437
dc.relation
Versió preprint del document publicat a https://doi.org/10.1007/s00033-011-0116-5
dc.relation
ZAMP. Journal of Applied Mathematics and Physics, 2011, vol. 62, núm. 4, p. 567-574
dc.rights
(c) Springer Verlag, 2011
dc.rights
info:eu-repo/semantics/openAccess
dc.title
On the planar integrable differential systems