We study the local analytic integrability for real Li\'{e}nard systems, $\dot x=y-F(x),$ $\dot y= x$, with $F(0)=0$ but $F'(0)\ne0,$ which implies that it has a strong saddle at the origin. First we prove that this problem is equivalent to study the local analytic integrability of the $[p:-q]$ resonant saddles. This result implies that the local analytic integrability of a strong saddle is a hard problem and only partial results can be obtained. Nevertheless this equivalence gives a new method to compute the so-called resonant saddle quantities transforming the $[p:-q]$ resonant saddle into a strong saddle.
The first author is partially supported by a MINECO/FEDER grant number MTM2014- 53703-P and an AGAUR (Generalitat de Catalunya) grant number 2014SGR-1204. The second author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINEC0 grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-568.
English
Center problem; Analytic integrability; Strong saddle
Elsevier
MINECO/PN2013-2016/MTM2014-53703-P
MINECO/PN2013-2016/MTM2013-40998-P
MINECO/PN2013-2016/MTM2016-77278-P
Versió postprint del document publicat a http://dx.doi.org/10.1016/j.aml.2017.03.004
Applied Mathematics Letters, 2017, vol. 70, p. 39-45
cc-by-nc-nd (c) Elsevier, 2017
http://creativecommons.org/licenses/by-nc-nd/3.0/es
Documents de recerca [17848]