The Manhattan Product of Digraphs

dc.contributor.author
Comellas Padró, Francesc
dc.contributor.author
Dalfó, Cristina
dc.contributor.author
Fiol Mora, Miguel Ángel
dc.date.accessioned
2024-12-05T22:38:20Z
dc.date.available
2024-12-05T22:38:20Z
dc.date.issued
2019-02-04T08:33:32Z
dc.date.issued
2019-02-04T08:33:32Z
dc.date.issued
2013
dc.identifier
https://doi.org/10.5614/ejgta.2013.1.1.2
dc.identifier
2338-2287
dc.identifier
http://hdl.handle.net/10459.1/65706
dc.identifier.uri
http://hdl.handle.net/10459.1/65706
dc.description.abstract
We study the main properties of a new product of bipartite digraphs which we call Manhattan product. This product allows us to understand the subjacent product in the Manhattan street networks and can be used to built other networks with similar good properties. It is shown that if all the factors of such a product are (directed) cycles, then the digraph obtained is a Manhattan street network, a widely studied topology for modeling some interconnection networks. To this respect, it is proved that many properties of these networks, such as high symmetries, reduced diameter and the presence of Hamiltonian cycles, are shared by the Manhattan product of some digraphs. Moreover, we show that the Manhattan product of two Manhattan streets networks is also a Manhattan street network. Finally, some sufficient conditions for the Manhattan product of two Cayley digraphs to be also a Cayley digraph are given. Throughout our study we use some interesting recent concepts, such as the unilateral distance and related graph invariants.
dc.description.abstract
This research was supported by the Ministry of Science and Innovation (Spain) and the European Regional Development Fund under project MTM2011-28800-C02-01-1 and by the Catalan Research Council under project 2009SGR1387.
dc.language
eng
dc.publisher
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
dc.relation
info:eu-repo/grantAgreement/MICINN//MTM2011-28800-C02-01/ES/OPTIMIZACION Y PROBLEMAS EXTREMALES EN TEORIA DE GRAFOS Y COMBINATORIA. APLICACIONES A LAS REDES DE COMUNICACION/
dc.relation
Reproducció del document publicat a https://doi.org/10.5614/ejgta.2013.1.1.2
dc.relation
Electronic Journal of Graph Theory and Applications, 2013, vol. 1, núm. 1, p. 11–27
dc.rights
cc-by-sa (c) F. Comellas et al., 2013
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-sa/4.0/
dc.subject
Self-converse digraph
dc.subject
Manhattan street network
dc.subject
Unilateral diameter
dc.subject
Cayley digraph
dc.title
The Manhattan Product of Digraphs
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)