Autor/a

López Masip, Susana-Clara

Muntaner Batle, Francesc Antoni

Prabu, M.

Fecha de publicación

2019-06-11T08:50:57Z

2019-06-11T08:50:57Z

2017

2019-06-11T08:50:57Z



Resumen

A graph G is called edge-magic if there is a bijective function f from the set of vertices and edges to the set {1,2, ,|V(G)|+|E(G)|} such that the sum f(x)+f(xy)+f(y) for any xy in E(G) is constant. Such a function is called an edge-magic labelling of G and the constant is called the valence. An edge-magic labelling with the extra property that f(V(G))={1,2, ,|V(G)|} is called super edge-magic. A graph is called perfect (super) edge-magic if all theoretical (super) edge-magic valences are possible. In this paper we continue the study of the valences for (super) edge-magic labelings of crowns Cm⊙K¯¯¯¯¯n and we prove that the crowns are perfect (super) edge-magic when m=pq where p and q are different odd primes. We also provide a lower bound for the number of different valences of Cm⊙K¯¯¯¯¯n , in terms of the prime factors of m.


The research conducted in this document by the first author has been supported by the Spanish Research Council under project MTM2011-28800-C02-01 and symbolically by the Catalan Research Council under grant 2014SGR1147.

Tipo de documento

Artículo
Versión aceptada

Lengua

Inglés

Materias y palabras clave

Edge-magic; Super edge-magic; Valence; Perfect (super) edge-magic

Publicado por

Springer

Documentos relacionados

MICINN/PN2008-2011/MTM2011-28800-C02-01

Versió postprint del document publicat a: https://doi.org/10.1007/s00025-016-0643-7

Results in Mathematics, 2017, vol. 71, num. 3-4, p. 1459-1471

Derechos

(c) Springer, 2017

Este ítem aparece en la(s) siguiente(s) colección(ones)