On the beta-number of forests with isomorphic components

dc.contributor.author
Ichishima, R.
dc.contributor.author
López Masip, Susana-Clara
dc.contributor.author
Muntaner Batle, Francesc Antoni
dc.contributor.author
Oshima, A.
dc.date.accessioned
2024-12-05T22:40:52Z
dc.date.available
2024-12-05T22:40:52Z
dc.date.issued
2019-06-11T10:35:27Z
dc.date.issued
2019-06-11T10:35:27Z
dc.date.issued
2018
dc.date.issued
2019-06-11T10:35:28Z
dc.identifier
https://doi.org/10.7151/dmgt.2033
dc.identifier
1234-3099
dc.identifier
http://hdl.handle.net/10459.1/66443
dc.identifier.uri
http://hdl.handle.net/10459.1/66443
dc.description.abstract
The beta-number, β (G), of a graph G is defined to be either the smallest positive integer n for which there exists an injective function f : V (G) → {0, 1, . . . , n} such that each uv ∈ E (G) is labeled |f (u) − f (v)| and the resulting set of edge labels is {c, c+ 1, . . . , c+|E (G)| −1} for some positive integer c or +∞ if there exists no such integer n. If c = 1, then the resulting beta-number is called the strong beta-number of G and is denoted by βs (G). In this paper, we show that if G is a bipartite graph and m is odd, then β (mG) ≤ mβ (G) + m − 1. This leads us to conclude that β (mG) = m |V (G)| − 1 if G has the additional property that G is a graceful nontrivial tree. In addition to these, we examine the (strong) beta-number of forests whose components are isomorphic to either paths or stars.
dc.format
application/pdf
dc.language
eng
dc.publisher
De Gruyter Open
dc.relation
Reproducció del document publicat a https://doi.org/10.7151/dmgt.2033
dc.relation
Discussiones Mathematicae Graph Theory, 2018, vol. 38, num. 3, p. 683-701
dc.rights
cc-by-nc-nd (c) De Gruyter Open, 2018
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Beta-number
dc.subject
Strong beta-number
dc.subject
Graceful labeling
dc.subject
Skolem sequence
dc.subject
Hooked Skolem sequence
dc.title
On the beta-number of forests with isomorphic components
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)