A distributed argumentation algorithm for mining consistent opinions in weighted Twitter discussions

dc.contributor.author
Alsinet, Teresa
dc.contributor.author
Argelich Romà, Josep
dc.contributor.author
Béjar Torres, Ramón
dc.contributor.author
Cemeli Sánchez, Joel
dc.date.accessioned
2024-12-05T22:34:13Z
dc.date.available
2024-12-05T22:34:13Z
dc.date.issued
2019-12-05T13:28:14Z
dc.date.issued
2019-12-05T13:28:14Z
dc.date.issued
2019
dc.identifier
https://doi.org/10.1007/s00500-018-3380-x
dc.identifier
1432-7643
dc.identifier
1433-7479
dc.identifier
http://hdl.handle.net/10459.1/67673
dc.identifier.uri
http://hdl.handle.net/10459.1/67673
dc.description.abstract
Twitter is one of the most powerful social media platforms, reflecting both support and contrary opinions among people who use it. In a recent work, we developed an argumentative approach for analyzing the major opinions accepted and rejected in Twitter discussions. A Twitter discussion is modeled as a weighted argumentation graph where each node denotes a tweet, each edge denotes a relationship between a pair of tweets of the discussion and each node is attached to a weight that denotes the social relevance of the corresponding tweet in the discussion. In the social network Twitter, a tweet always refers to previous tweets in the discussion, and therefore the underlying argument graph obtained is acyclic. However, when in a discussion we group the tweets by author, the graph that we obtain can contain cycles. Based on the structure of graphs, in this work we introduce a distributed algorithm to compute the set of globally accepted opinions of a Twitter discussion based on valued argumentation. To understand the usefulness of our distributed algorithm, we study cases of argumentation graphs that can be solved efficiently with it. Finally, we present an experimental investigation that shows that when solving acyclic argumentation graphs associated with Twitter discussions our algorithm scales at most with linear time with respect to the size of the discussion. For argumentation graphs with cycles, we study tractable cases and we analyze how frequent are these cases in Twitter. Moreover, for the non-tractable cases we analyze how close is the solution of the distributed algorithm with respect to the one computed with the general sequential algorithm, that we have previously developed, that solves any argumentation graph.
dc.description.abstract
This work was partially funded by Spanish Project TIN2015-71799-C2-2-P (MINECO/FEDER).
dc.language
eng
dc.publisher
Springer
dc.relation
info:eu-repo/grantAgreement/MINECO//TIN2015-71799-C2-2-P/ES/RAZONAMIENTO, SATISFACCION Y OPTIMIZACION: ARGUMENTACION Y PROBLEMAS/
dc.relation
Reproducció del document publicat a https://doi.org/10.1007/s00500-018-3380-x
dc.relation
Soft Computing, 2019, vol. 23, núm,. 7, p. 2147–2166
dc.rights
(c) Springer-Verlag GmbH Germany, part of Springer Nature, 2018
dc.rights
info:eu-repo/semantics/openAccess
dc.subject
Twitter discussions
dc.subject
Valued argumentation
dc.subject
Probability values
dc.subject
Distributed algorithm
dc.subject
Tractable cases
dc.title
A distributed argumentation algorithm for mining consistent opinions in weighted Twitter discussions
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/acceptedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)