Author

García, I. A. (Isaac A.)

Publication date

2020-01-28T11:56:56Z

2020-12-01T23:13:10Z

2019-10-07

2020-01-28T11:57:00Z



Abstract

We consider polynomial families of real planar vector fields for which the origin is a monodromic nilpotent singularity having minimum Andree's number. There the centers are characterized by the existence of a formal inverse integrating factor. For such families we give, under some assumptions, global bounds on the maximum number of limit cycles that can bifurcate from the singularity under perturbations within the family.


The author is partially supported by the MINECO Grant Number MTM2017-84383-P and the AGAUR Grant Number 2017SGR-1276.

Document Type

Article
acceptedVersion

Language

English

Subjects and keywords

Monodromic singularity; Nilpotent center

Publisher

Springer

Related items

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84383-P/ES/ORBITAS PERIODICAS E INTEGRABILIDAD EN SISTEMAS DIFERENCIALES CONTINUOS/

Versió postprint del document publicat a https://doi.org/10.1007/s40879-018-0304-3

European Journal of Mathematics, 2019, vol. 5, núm. 4, p. 1293-1330

Rights

(c) Springer, 2019

This item appears in the following Collection(s)