Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry

Author

Gené Mola, Jordi

Sanz Cortiella, Ricardo

Rosell Polo, Joan Ramon

Morros Rubió, Josep Ramon

Ruiz Hidalgo, Javier

Vilaplana Besler, Verónica

Gregorio López, Eduard

Publication date

2020-04-28T11:19:12Z

2020-04-28T11:19:12Z

2020



Abstract

The present dataset contains colour images acquired in a commercial Fuji apple orchard (Malus domestica Borkh. cv. Fuji) to reconstruct the 3D model of 11 trees by using structure-from-motion (SfM) photogrammetry. The data provided in this article is related to the research article entitled “Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry” [1]. The Fuji-SfM dataset includes: (1) a set of 288 colour images and the corresponding annotations (apples segmentation masks) for training instance segmentation neural networks such as Mask-RCNN; (2) a set of 582 images defining a motion sequence of the scene which was used to generate the 3D model of 11 Fuji apple trees containing 1455 apples by using SfM; (3) the 3D point cloud of the scanned scene with the corresponding apple positions ground truth in global coordinates. With that, this is the first dataset for fruit detection containing images acquired in a motion sequence to build the 3D model of the scanned trees with SfM and including the corresponding 2D and 3D apple location annotations. This data allows the development, training, and test of fruit detection algorithms either based on RGB images, on coloured point clouds or on the combination of both types of data. Dades primàries associades a l'article http://hdl.handle.net/10459.1/68505


This work was partly funded by the Secretaria d'Universitats i Recerca del Departament d'Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Economy and Competitiveness (project AGL2013-48297-C2-2-R) and the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00). Part of the work was also developed within the framework of the project TEC2016-75976-R, financed by the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (ERDF). The Spanish Ministry of Education is thanked for Mr. J. Gené’s pre-doctoral fellowships (FPU15/03355).

Document Type

Article
Published version

Language

English

Subjects and keywords

Fruit detection; Yield prediction; Yield mapping; Structure-from-motion (SfM); Photogrammetry; Mask R-CNN; Terrestrial remote sensing

Publisher

Elsevier

Related items

info:eu-repo/grantAgreement/MINECO//AGL2013-48297-C2-2-R/ES/HERRAMIENTAS DE BASE FOTONICA PARA LA GESTION AGRONOMICA Y EL USO DE PRODUCTOS FITOSANITARIOS SOSTENIBLE EN CULTIVOS ARBOREOS EN EL MARCO DE LA AGRICULTURA DE PRECISION/

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/

info:eu-repo/grantAgreement/MINECO//TEC2016-75976-R/ES/

Reproducció del document publicat a https://doi.org/10.1016/j.dib.2020.105591

Data in Brief, 2020, vol. 30, p. 105591

http://hdl.handle.net/10459.1/68505

Rights

cc-by (c) Gené et al., 2020

http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)