Assessing the Performance of RGB-D Sensors for 3D Fruit Crop Canopy Characterization under Different Operating and Lighting Conditions

dc.contributor.author
Gené Mola, Jordi
dc.contributor.author
Llorens Calveras, Jordi
dc.contributor.author
Rosell Polo, Joan Ramon
dc.contributor.author
Gregorio López, Eduard
dc.contributor.author
Arnó Satorra, Jaume
dc.contributor.author
Solanelles Batlle, Francesc
dc.contributor.author
Martínez Casasnovas, José Antonio
dc.contributor.author
Escolà i Agustí, Alexandre
dc.date.accessioned
2024-12-05T22:10:04Z
dc.date.available
2024-12-05T22:10:04Z
dc.date.issued
2020-12-16T08:58:20Z
dc.date.issued
2020-12-16T08:58:20Z
dc.date.issued
2020-12-10
dc.date.issued
2020-12-16T08:58:20Z
dc.identifier
https://doi.org/10.3390/s20247072
dc.identifier
1424-8220
dc.identifier
http://hdl.handle.net/10459.1/70097
dc.identifier.uri
http://hdl.handle.net/10459.1/70097
dc.description.abstract
The use of 3D sensors combined with appropriate data processing and analysis has provided tools to optimise agricultural management through the application of precision agriculture. The recent development of low-cost RGB-Depth cameras has presented an opportunity to introduce 3D sensors into the agricultural community. However, due to the sensitivity of these sensors to highly illuminated environments, it is necessary to know under which conditions RGB-D sensors are capable of operating. This work presents a methodology to evaluate the performance of RGB-D sensors under different lighting and distance conditions, considering both geometrical and spectral (colour and NIR) features. The methodology was applied to evaluate the performance of the Microsoft Kinect v2 sensor in an apple orchard. The results show that sensor resolution and precision decreased significantly under middle to high ambient illuminance (>2000 lx). However, this effect was minimised when measurements were conducted closer to the target. In contrast, illuminance levels below 50 lx affected the quality of colour data and may require the use of artificial lighting. The methodology was useful for characterizing sensor performance throughout the full range of ambient conditions in commercial orchards. Although Kinect v2 was originally developed for indoor conditions, it performed well under a range of outdoor conditions.
dc.description.abstract
This research was funded by the Spanish Ministry of Economy and Competitiveness and the Ministry of Science, Innovation and Universities through the program Plan Estatal I+D+i Orientada a los Retos de la Sociedad, grant numbers AGL2013-48297-C2-2-R and RTI2018-094222-B-I00, respectively.
dc.format
application/pdf
dc.language
eng
dc.publisher
MDPI
dc.relation
info:eu-repo/grantAgreement/MINECO//AGL2013-48297-C2-2-R/ES/HERRAMIENTAS DE BASE FOTONICA PARA LA GESTION AGRONOMICA Y EL USO DE PRODUCTOS FITOSANITARIOS SOSTENIBLE EN CULTIVOS ARBOREOS EN EL MARCO DE LA AGRICULTURA DE PRECISION/
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094222-B-I00/ES/TECNOLOGIAS DE AGRICULTURA DE PRECISION PARA OPTIMIZAR EL MANEJO DEL DOSEL FOLIAR Y LA PROTECCION FITOSANITARIA SOSTENIBLE EN PLANTACIONES FRUTALES/
dc.relation
Reproducció del document publicat a: https://doi.org/10.3390/s20247072
dc.relation
Sensors, 2020, vol. 20, num. 7072
dc.relation
http://hdl.handle.net/10459.1/70095
dc.rights
cc-by (c) Gené Mola, Jordi et al., 2020
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by/3.0/es
dc.subject
RGB-D cameras
dc.subject
Depth cameras
dc.subject
Precision agriculture
dc.subject
Plant phenotyping
dc.subject
Agricultural robotics
dc.title
Assessing the Performance of RGB-D Sensors for 3D Fruit Crop Canopy Characterization under Different Operating and Lighting Conditions
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)