Autor/a

Moradi, Mehdi

Mateu, Jorge

Comas Rodríguez, Carles

Data de publicació

2021-01-26T10:22:37Z

2021-10-15T22:18:49Z

2020



Resum

Statistical analysis of point processes often assumes that the underlying process is isotropic in the sense that its distribution is invariant under rotation. For point processes on ℝ2, some tests based on the K‐ and nearest neighbour orientation functions have been proposed to check such an assumption. However, anisotropy and directional analysis need proper caution when dealing with point processes on linear networks, as the implicit geometry of the network forces particular directions that the points of the pattern have to necessarily meet. In this paper, we adapt such tests to the case of linear networks, and discuss how to use them to detect particular directional preferences, even at some angles that are different from the main angles imposed by the network. Through a simulation study, we check the performance of our proposals under different settings, over a linear network and a dendrite tree, showing that they are able to precisely detect the directional preferences of the points in the pattern, regardless the type of spatial interaction and the geometry of the network. We use our tests to highlight the directional preferences in the spatial distribution of traffic accidents in Barcelona (Spain) during 2019, and in Medellin (Colombia), during 2016.


J. Mateu has been partially funded by grants PID2019-107392RB-I00 from the Spanish Ministry of Science, AICO/2019/198 from Generalitat Valenciana, and UJI-B2018-04 from UJI, and C. Comas by grant MTM2017-86767-R from the Spanish Ministry of Science.

Tipus de document

Article
Versió acceptada

Llengua

Anglès

Matèries i paraules clau

Circular density; Dendrite; Immigration-death

Publicat per

Wiley

Documents relacionats

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86767-R/ES/NUEVAS FAMILIAS DE PROCESOS PUNTUALES ESPACIO-TEMPORALES DEFINIDAS EN ESTRUCTURAS COMPLEJAS. MODELIZACION, ESTIMACION Y PREDICCION EN NETWORKS (GRAFOS)/

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107392RB-I00/ES/ANALISIS ESTADISTICO DE EVENTOS EN ESPACIO-TIEMPO SOBRE REDES Y TRAYECTORIAS. CARACTERISTICAS DE SEGUNDO ORDEN, MODELOS PARAMETRICOS, INFERENCIA Y ANALISIS DE MARCAS FUNCIONAL/

Versió postprint del document publicat a https://doi.org/10.1002/sta4.323

Stat, 2020, e323

Drets

(c) Wiley, 2002

Aquest element apareix en la col·lecció o col·leccions següent(s)