Iron Speciation in Fram Strait and Over the Northeast Greenland Shelf: An Inter-Comparison Study of Voltammetric Methods

Author

Ardiningsih, Indah

Zhu, Kechen

Lodeiro, Pablo

Gledhill, Martha

Reichart, Gert-Jan

Achterberg, Eric P.

Middag, Rob

Gerringa, Loes J. A.

Publication date

2021-02-25T07:44:02Z

2021-02-25T07:44:02Z

2021-01-21

2021-02-25T07:44:02Z



Abstract

Competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE-AdCSV) is a widely used technique to determine dissolved iron (Fe) speciation in seawater, and involves competition for Fe of a known added ligand (AL) with natural organic ligands. Three different ALs were used, 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-napthol (NN). The total ligand concentrations ([Lt]) and conditional stability constants (log K′Fe'L) obtained using the different ALs are compared. The comparison was done on seawater samples from Fram Strait and northeast Greenland shelf region, including the Norske Trough, Nioghalvfjerdsfjorden (79N) Glacier front and Westwind Trough. Data interpretation using a one-ligand model resulted in [Lt]SA (2.72 ± 0.99 nM eq Fe) > [Lt]TAC (1.77 ± 0.57 nM eq Fe) > [Lt]NN (1.57 ± 0.58 nM eq Fe); with the mean of log K′Fe'L being the highest for TAC (log ′KFe'L(TAC) = 12.8 ± 0.5), followed by SA (log K′Fe'L(SA) = 10.9 ± 0.4) and NN (log K′Fe'L(NN) = 10.1 ± 0.6). These differences are only partly explained by the detection windows employed, and are probably due to uncertainties propagated from the calibration and the heterogeneity of the natural organic ligands. An almost constant ratio of [Lt]TAC/[Lt]SA = 0.5 - 0.6 was obtained in samples over the shelf, potentially related to contributions of humic acid-type ligands. In contrast, in Fram Strait [Lt]TAC/[Lt]SA varied considerably from 0.6 to 1, indicating the influence of other ligand types, which seemed to be detected to a different extent by the TAC and SA methods. Our results show that even though the SA, TAC and NN methods have different detection windows, the results of the one ligand model captured a similar trend in [Lt], increasing from Fram Strait to the Norske Trough to the Westwind Trough. Application of a two-ligand model confirms a previous suggestion that in Polar Surface Water and in water masses over the shelf, two ligand groups existed, a relatively strong and relatively weak ligand group. The relatively weak ligand group contributed less to the total complexation capacity, hence it could only keep part of Fe released from the 79N Glacier in the dissolved phase.


This study was supported by Royal Netherland Institute for Sea Research. Collection and analysis of samples were further supported by GEOMAR Helmholtz Centre for Ocean Research (the Helmholtz Association and the German Research Foundation (DFG Award Number AC 217/1-1 to EA). IA was supported by a doctoral scholarship from Indonesia Endowment Fund for Education (LPDP), and KZ was supported by a scholarship from the China Scholarship Council.

Document Type

Article
Published version

Language

English

Subjects and keywords

Fram Strait; Northeast Greenland shelf; Fe speciation; Fe-binding ligands; Voltammetric methods

Publisher

Frontiers Media

Related items

Reproducció del document publicat a: https://doi.org/10.3389/fmars.2020.609379

Frontiers In Marine Science, 2021, vol. 7, p. 609379

Rights

cc-by (c) Ardiningsih et al., 2021

http://creativecommons.org/licenses/by/4.0/

This item appears in the following Collection(s)