Autor/a

Solé-Casals, Jordi

Munteanu, Cristian

Capdevila Martín, Oriol

Barbé Illa, Ferran

Durán-Cantolla, Joaquín

Queipo, Carlos

Amilibia, Jose

Data de publicació

2021-03-18T08:57:39Z

2021-03-18T08:57:39Z

2014



Resum

This paper deals with the potential and limitations of using voice and speech processing to detect Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who present various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set of features for detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients where voice seems to play a secondary role. We found that the best classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.

Tipus de document

Article
Versió acceptada

Llengua

Anglès

Matèries i paraules clau

Obstructive Sleep Apnea; Voice processing; Genetic Algorithms; Feature reduction

Publicat per

Elsevier

Documents relacionats

Versió postprint del document publicat a https://doi.org/10.1016/j.asoc.2014.06.017

Applied Soft Computing, 2014, vol. 23, p. 346-354

Drets

cc-by-nc-nd (c) Elsevier, 2014

http://creativecommons.org/licenses/by-nc-nd/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)