Autor/a

Gasull, Armengol

Giné, Jaume

Valls, Claudia

Data de publicació

2021-04-09T11:31:00Z

2021-04-09T11:31:00Z

2020



Resum

Given a planar analytic differential equation with a critical point which is a weak focus of order k, it is well known that at most k limit cycles can bifurcate from it. Moreover, in case of analytic Liénard differential equations this order can be computed as one half of the multiplicity of an associated planar analytic map. By using this approach, we can give an upper bound of the maximum order of the weak focus of pure trigonometric Liénard equations only in terms of the degrees of the involved trigonometric polynomials. Our result extends to this trigonometric Liénard case a similar result known for polynomial Liénard equations.


The first author is partially supported by “Agencia Estatal de Investigación” and “Ministerio de Ciencia, Innovación y Universidades”, Grant number MTM2016-77278-P and AGAUR, Generalitat de Catalunya, grant 2017-SGR-1617. The second author is partially supported by a MINECO/FEDER grant number MTM2017-84383-P and an AGAUR grant number 2017SGR-1276. The third author is partially supported by FCT/Portugal through UID/MAT/04459/2013.

Tipus de document

Article
Versió presentada

Llengua

Anglès

Matèries i paraules clau

Trigonometric Liénard equation; Weak focus; Cyclicity

Publicat per

Springer

Documents relacionats

info:eu-repo/grantAgreement/MINECO//MTM2016-77278-P/ES/

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-84383-P/ES/ORBITAS PERIODICAS E INTEGRABILIDAD EN SISTEMAS DIFERENCIALES CONTINUOS/

Versió preprint del document publicat a https://doi.org/10.1007/s10231-019-00936-8

Annali di Matematica Pura ed Applicata, 2020, vol.199, p. 1673-1684

Drets

(c) Springer, 2020

Aquest element apareix en la col·lecció o col·leccions següent(s)