Autor/a

Dalfó, Cristina

Fiol Mora, Miguel Ángel

López Lorenzo, Ignacio

Martínez Pérez, Álvaro

Data de publicació

2021-04-13T07:45:47Z

2021-06

2021-04-13T07:45:48Z



Resum

In this paper, we deal with a simple geometric problem: Is it possible to partition a rectangle into k non-congruent rectangles of equal area? This problem is motivated by the so-called 'Mondrian art problem' that asks a similar question for dissections with rectangles of integer sides. Here, we generalize the Mondrian problem by allowing rectangles of real sides. In this case, we show that the minimum value of k for a rectangle to have a 'perfect Mondrian partition' (that is, with non-congruent equal-area rectangles) is seven. Moreover, we prove that such a partition is unique (up to symmetries) and that there exist exactly two proper perfect Mondrian partitions for k=8. Finally, we also prove that any square has a perfect Mondrian decomposition for k >= 7.


The research of the first author has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

Tipus de document

Article
Versió publicada

Llengua

Anglès

Matèries i paraules clau

Mondrian problem; Non-congruent rectangles; Dissection; Digraph

Publicat per

Elsevier

Documents relacionats

Reproducció del document publicat a: https://doi.org/10.1016/j.disc.2021.112389

Discrete Mathematics, 2021, vol. 344, num. 6, p. 112389

info:eu-repo/grantAgreement/EC/H2020/734922/EU/CONNECT

Drets

cc-by (c) C. Dalfó et al., 2021

http://creativecommons.org/licenses/by/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)