Stochastic smoothing of point processes for wildlife-vehicle collisions on road networks

Autor/a

Borrajo, M.I.

Comas Rodríguez, Carles

Costafreda Aumedes, Sergi

Mateu, Jorge

Data de publicació

2021-09-27T08:44:26Z

2021-09-27T08:44:26Z

2021



Resum

Wildlife-vehicle collisions on road networks represent a natural problem between human populations and the environment, that affects wildlife management and raise a risk to the life and safety of car drivers. We propose a statistically principled method for kernel smoothing of point pattern data on a linear network when the first-order intensity depends on covariates. In particular, we present a consistent kernel estimator for the first-order intensity function that uses a convenient relationship between the intensity and the density of events location over the network, which also exploits the theoretical relationship between the original point process on the network and its transformed process through the covariate. We derive the asymptotic bias and variance of the estimator, and adapt some data-driven bandwidth selectors to estimate the optimal bandwidth. The performance of the estimator is analysed through a simulation study under inhomogeneous scenarios. We present a real data analysis on wildlife-vehicle collisions in a region of North-East of Spain.


The authors acknowledge the support of the Spanish Ministry of Economy, Industry and Competitivity through Grants MTM2016-76969P, MTM2016-78917-R and MTM2017- 86767-R. J. Mateu is also partially funded by grant UJI-B2018-04.

Tipus de document

Article
Versió publicada

Llengua

Anglès

Matèries i paraules clau

Bandwidth selection; Covariates; First-order intensity; Kernel estimation

Publicat per

Springer

Documents relacionats

info:eu-repo/grantAgreement/MINECO//MTM2016-76969-P/ES/

info:eu-repo/grantAgreement/MINECO//MTM2016-78917-R/ES/

info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-86767-R/ES/NUEVAS FAMILIAS DE PROCESOS PUNTUALES ESPACIO-TEMPORALES DEFINIDAS EN ESTRUCTURAS COMPLEJAS. MODELIZACION, ESTIMACION Y PREDICCION EN NETWORKS (GRAFOS)/

Reproducció del document publicat a https://doi.org/10.1007/s00477-021-02072-3

Stochastic Environmental Research and Risk Assessment, 2021

Drets

cc-by (c) Borrajo et al., 2021

http://creativecommons.org/licenses/by/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)