Automated detection of COVID-19 cough

dc.contributor.author
Tena del Pozo, Alberto
dc.contributor.author
Clarià Sancho, Francisco
dc.contributor.author
Solsona Tehàs, Francesc
dc.date.accessioned
2024-12-05T22:12:07Z
dc.date.available
2024-12-05T22:12:07Z
dc.date.issued
2021-10-07T10:43:14Z
dc.date.issued
2021-10-07T10:43:14Z
dc.date.issued
2022
dc.identifier
https://doi.org/10.1016/j.bspc.2021.103175
dc.identifier
1746-809
dc.identifier
http://hdl.handle.net/10459.1/72014
dc.identifier.uri
http://hdl.handle.net/10459.1/72014
dc.description.abstract
Easy detection of COVID-19 is a challenge. Quick biological tests do not give enough accuracy. Success in the fight against new outbreaks depends not only on the efficiency of the tests used, but also on the cost, time elapsed and the number of tests that can be done massively. Our proposal provides a solution to this challenge. The main objective is to design a freely available, quick and efficient methodology for the automatic detection of COVID-19 in raw audio files. Our proposal is based on automated extraction of time–frequency cough features and selection of the more significant ones to be used to diagnose COVID-19 using a supervised machine-learning algorithm. Random Forest has performed better than the other models analysed in this study. An accuracy close to 90% was obtained. This study demonstrates the feasibility of the automatic diagnose of COVID-19 from coughs, and its applicability to detecting new outbreaks.
dc.description.abstract
This work was supported by the Intelligent Energy Europe programme and the Ministerio de Economía y Competitividad under contract TIN2017-84553-C2-2-R and the Ministerio de Ciencia e Innovación under contract PID2020-113614RB-C22. We thank Alfredo Jover and Maria Ramirez from the Functional Unit of Nosocomial Infections, and Cristina Acosta from the Internal Medicine, of the Arnau de Vilanova University Hospital in Lleida, who recorded coughs using the website covid.udl.cat. We also thank the University of Cambridge (in particular, Cecilia Mascolo), the Coswara and Virufy projects, who voluntary share their cough datasets. Finally, we also thank everyone who volunteered their cough.
dc.language
eng
dc.publisher
Elsevier
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84553-C2-2-R/ES/APROVECHANDO LOS NUEVOS PARADIGMAS DE COMPUTO PARA LOS RETOS DE LA SOCIEDAD DIGITAL - UDL/
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113614RB-C22/ES/COMPUTACION AVANZADA PARA LOS RETOS DE LA SOCIEDAD DIGITAL/
dc.relation
Reproducció del document publicat a https://doi.org/10.1016/j.bspc.2021.103175
dc.relation
Biomedical Signal Processing and Control, 2022, vol. 71, Part A, 103175
dc.rights
cc-by-nc-nd (c) Alberto Tena, Francesc Clarià, Francesc Solsona, 2021
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
COVID-19
dc.subject
Automated cough detection
dc.subject
Diagnosis
dc.subject
Signal processing
dc.subject
Time–frequency
dc.title
Automated detection of COVID-19 cough
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)