A data-driven method for unsupervised electricity consumption characterisation at the district level and beyond

dc.contributor.author
Mor Martínez, Gerard
dc.contributor.author
Cipriano, Jordi
dc.contributor.author
Martirano, Giacomo
dc.contributor.author
Pignatelli, Francesco
dc.contributor.author
Lodi, Chiara
dc.contributor.author
Lazzari, Florencia
dc.contributor.author
Grillone, Benedetto
dc.contributor.author
Chemisana Villegas, Daniel
dc.date.accessioned
2024-12-05T22:18:21Z
dc.date.available
2024-12-05T22:18:21Z
dc.date.issued
2021-10-14T10:25:33Z
dc.date.issued
2021-10-14T10:25:33Z
dc.date.issued
2021
dc.identifier
https://doi.org/10.1016/j.egyr.2021.08.195
dc.identifier
2352-4847
dc.identifier
http://hdl.handle.net/10459.1/72061
dc.identifier.uri
http://hdl.handle.net/10459.1/72061
dc.description.abstract
A bottom-up electricity characterisation methodology of the building stock at the local level is presented. It is based on the statistical learning analysis of aggregated energy consumption data, weather data, cadastre, and socioeconomic information. To demonstrate the validity of this methodology, the characterisation of the electricity consumption of the whole province of Lleida, located in northeast Spain, is implemented and tested. The geographical aggregation level considered is the postal code since it is the highest data resolution available through the open data sources used in the research work. The development and the experimental tests are supported by a web application environment formed by interactive user interfaces specifically developed for this purpose. The paper’s novelty relies on the application of statistical data methods able to infer the main energy performance characteristics of a large number of urban districts without prior knowledge of their building characteristics and with the use of solely measured data coming from smart meters, cadastre databases and weather forecasting services. A data-driven technique disaggregates electricity consumption in multiple uses (space heating, cooling, holidays and baseload). In addition, multiple Key Performance Indicators (KPIs) are derived from this disaggregated energy uses to obtain the energy characterisation of the buildings within a specific area. The potential reuse of this methodology allows for a better understanding of the drivers of electricity use, with multiple applications for the public and private sector.
dc.description.abstract
This work emanated from research conducted with the fi-nancial support of the European Commission through the H2020project BIGG , grant agreement 957047, and the JRC Expert Con-tractCT-EX2017D306558-102.D.ChemisanathanksICREAfortheICREA Acadèmia. Dr J. Cipriano also thanks the Ministerio deCiencia e Innovación of the Spanish Government for the Juan dela Cierva Incorporación grant
dc.language
eng
dc.publisher
Elsevier
dc.relation
Reproducció del document publicat a https://doi.org/10.1016/j.egyr.2021.08.195
dc.relation
Energy Reports, 2021, vol. 7, p. 5667-5684
dc.relation
info:eu-repo/grantAgreement/EC/H2020/957047/EU/BIGG
dc.rights
cc-by (c) Mor et al., 2021
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
http://creativecommons.org/licenses/by/4.0/
dc.subject
Building-stockmodels
dc.subject
Electricity
dc.subject
Characterisation
dc.subject
Data-driven
dc.title
A data-driven method for unsupervised electricity consumption characterisation at the district level and beyond
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/publishedVersion


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)