Haggenmüller, Sarah
Maron, Roman C.
Hekler, Achim
Utikal, Jochen S.
Barata, Catarina
Barnhill, Raymond L.
Beltraminelli, Helmut
Berking, Carola
Betz-Stablein, Brigid
Blum, Andreas
Braun, Stephan A.
Carr, Richard
Combalia, Marc
Fernandez Figueras, Maria-Teresa
Ferrara, Gerardo
Fraitag, Sylvie
French, Lars E.
Gellrich, Frank F.
Ghoreschi, Kamran
Goebeler, Matthias
Guitera, Pascale
Haenssle, Holger A.
Haferkamp, Sebastian
Heinzerling, Lucie
Heppt, Markus V.
Hilke, Franz J.
Hobelsberger, Sarah
Krahl, Dieter
Kutzner, Heinz
Lallas, Aimilios
Liopyris, Konstantinos
Llamas-Velasco, Mar
Malvehy, Josep
Meier, Friedegund
Müller, Cornelia S.L.
Navarini, Alexander A.
Navarrete-Dechent, Cristián
Perasole, Antonio
Poch, Gabriela
Podlipnik, Sebastian
Requena, Luis
Rotemberg, Veronica M.
Saggini, Andrea
Sangueza, Omar P.
Santonja, Carlos
Schadendorf, Dirk
Schilling, Bastian
Schlaak, Max
Schlager, Justin G.
Sergon, Mildred
Sondermann, Wiebke
Soyer, H. Peter
Starz, Hans
Stolz, Wilhelm
Vale, Esmeralda
Weyers, Wolfgang
Zink, Alexander
Krieghoff-Henning, Eva I.
Kather, Jakob N.
Von Kalle, Christof
Lipka, Daniel B.
Fröhling, Stefan
Hauschild, Axel
Kittler, Harald
Brinker, Titus J.
2021-10
Background: Multiple studies have compared the performance of artificial intelligence (AI)–based models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice. Objective: The objective of the study was to systematically analyse the current state of research on reader studies involving melanoma and to assess their potential clinical relevance by evaluating three main aspects: test set characteristics (holdout/out-of-distribution data set, composition), test setting (experimental/clinical, inclusion of metadata) and representativeness of participating clinicians. Methods: PubMed, Medline and ScienceDirect were screened for peer-reviewed studies published between 2017 and 2021 and dealing with AI-based skin cancer classification involving melanoma. The search terms skin cancer classification, deep learning, convolutional neural network (CNN), melanoma (detection), digital biomarkers, histopathology and whole slide imaging were combined. Based on the search results, only studies that considered direct comparison of AI results with clinicians and had a diagnostic classification as their main objective were included. Results: A total of 19 reader studies fulfilled the inclusion criteria. Of these, 11 CNN-based approaches addressed the classification of dermoscopic images; 6 concentrated on the classification of clinical images, whereas 2 dermatopathological studies utilised digitised histopathological whole slide images. Conclusions: All 19 included studies demonstrated superior or at least equivalent performance of CNN-based classifiers compared with clinicians. However, almost all studies were conducted in highly artificial settings based exclusively on single images of the suspicious lesions. Moreover, test sets mainly consisted of holdout images and did not represent the full range of patient populations and melanoma subtypes encountered in clinical practice.
English
61 - Medical sciences; 616.5 - Skin. Common integument. Clinical dermatology. Cutaneous complaints
Classificació del càncer de pell; Biomarcadors; Biomarcadors digitals; Càncer de pell; Xarxa neuronal de convolució; Intel·ligència artificial; Aprenentatge automàtic; Aprenentatge profund; Dermatologia; Melanoma maligne; Clasificación del cáncer de piel; Biomarcadores; Biomarcadores digitales; Cáncer de piel; Red neuronal de convolución; Inteligencia artificial; Aprendizaje automático; Aprendizaje profundo; Dermatología; Melanoma maligno; Classification of skin cancer; Biomarkers; Digital biomarkers; Skin cancer; Neural network of convolution; Artificial intelligence; Machine learning; Deep learning; Dermatology; Malignant melanoma
15
Elsevier
156;
European Journal of Cancer
2021 - The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Articles de recerca [2325]