Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties.
English
616.3 - Pathology of the digestive system. Complaints of the alimentary canal
Adhesió bacteriana; Biofilm; Diferenciació d'osteoblasts; Silà; Titani; Adhesión bacteriana; Biofilm; Diferenciación de osteoblastos; Silano; Titanio; Bacterial adhesion; Biofilm; Osteoblast differentiation; Silane; Titanium
29
Elsevier
59;
This work was supported by Fundación Ramón Areces and the Spanish Government (MINECO) under Grants MAT2009-12547 and MAT2012-30706, both co-funded by the European Union through European Regional Development Funds. M. Godoy-Gallardo and F.J. Gil report that they have a patent (ES patent P201 331756) on the TESPSA silane application.
Materials Science and Engineering: C
info:eu-repo/grantAgreement/ES/MINECO/MAT2009-12547
info:eu-repo/grantAgreement/ES/MINECO/MAT2012-30706
© 2015 Elsevier B.V. All rights reserved.
Articles de recerca [2325]