dc.contributor.author
Masip Rodo, David
dc.contributor.author
Lapedriza Garcia, Àgata
dc.contributor.author
Vitrià, Jordi
dc.date
2010-02-16T11:58:29Z
dc.date
2010-02-16T11:58:29Z
dc.identifier.citation
Lapedriza, A.; Masip, D.; Vitrià, J. (2008). "Subject Recognition Using a New Approach for Feature Extraction". In: VISIGRAPP 2008, International joint conference on computer vision graphics theory and applications. INSTICC. Funchal. 21 - 25 January.
dc.identifier.citation
978-989-8111-22-7
dc.identifier.uri
http://hdl.handle.net/10609/1423
dc.description.abstract
In this paper we propose a feature selection method that uses the mutual information (MI) measure on a Principal Component Analysis (PCA) based decomposition. PCA nds a linear projection of the data in a non-supervised way, which preserves the larger variance components of the data under the reconstruction error criterion. Previous works suggest that using the MI among the PCA projected data and the class labels applied to feature selection can add the missing discriminability criterion to the optimal reconstruction feature set. Our proposal goes one step further, de ning a global framework to add independent selection criteria in order
to lter misleading PCA components while the optimal variables for classi cation are preserved. We apply
this approach to a face recognition problem using the AR Face data set. Notice that, in this problem, PCA projection vectors strongly related to illumination changes and occlusions are usually preserved given theirhigh variance. Our additional selection tasks are able to discard this type of features while the relevant features to perform the subject recognition classi cation are kept. The experiments performed show an improved feature selection process using our combined criterion.
dc.relation
Computer Science, Technology and Multimedia
dc.subject
Educational technology
dc.subject
Machine learning
dc.subject
Information retrieval
dc.subject
Tecnologia educativa
dc.subject
Aprenentatge automàtic
dc.subject
Recuperació de la informació
dc.subject
Tecnología educativa
dc.subject
Aprendizaje automático
dc.subject
Recuperación de la información
dc.title
Subject recognition using a new approach for feature extraction
dc.type
info:eu-repo/semantics/conferenceObject