dc.contributor.author
Lerch Hostalot, Daniel
dc.contributor.author
Megías Jiménez, David
dc.date
2018-07-03T09:53:16Z
dc.date
2018-07-03T09:53:16Z
dc.identifier.citation
Lerch-Hostalot, Daniel & Megías, D. (2016). Unsupervised steganalysis based on artificial training sets. Engineering Applications of Artificial Intelligence, 50, 45-59. doi: 10.1016/j.engappai.2015.12.013
dc.identifier.citation
0952-1976
dc.identifier.citation
10.1016/j.engappai.2015.12.013
dc.identifier.uri
http://hdl.handle.net/10609/82325
dc.description.abstract
In this paper, an unsupervised steganalysis method that combines artificial training sets and supervised classification is proposed. We provide a formal framework for unsupervised classification of stego and cover images in the typical situation of targeted steganalysis (i.e., for a known algorithm and approximate embedding bit rate). We also present a complete set of experiments using (1) eight different image databases, (2) image features based on Rich Models, and (3) three different embedding algorithms: Least Significant Bit (LSB) matching, Highly undetectable steganography (HUGO) and Wavelet Obtained Weights (WOW). We show that the experimental results outperform previous methods based on Rich Models in the majority of the tested cases. At the same time, the proposed approach bypasses the problem of Cover Source Mismatch -when the embedding algorithm and bit rate are known- since it removes the need of a training database when we have a large enough testing set. Furthermore, we provide a generic proof of the proposed framework in the machine learning context. Hence, the results of this paper could be extended to other classification problems similar to steganalysis.
dc.format
application/pdf
dc.publisher
Engineering Applications of Artificial Intelligence
dc.relation
Engineering Applications of Artificial Intelligence, 2016, 50
dc.relation
https://doi.org/10.1016/j.engappai.2015.12.013
dc.rights
info:eu-repo/semantics/openAccess
dc.rights
<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
dc.subject
unsupervised steganalysis
dc.subject
cover source mismatch
dc.subject
machine learning
dc.subject
esteganàlisi no supervisat
dc.subject
desajustament de la font de portada
dc.subject
aprenentatge automàtic
dc.subject
esteganálisis no supervisado
dc.subject
desajuste de la fuente de portada
dc.subject
aprendizaje automático
dc.subject
Artificial intelligence -- Engineering applications
dc.subject
Intel·ligència artificial -- Aplicacions a l'enginyeria
dc.subject
Inteligencia artificial -- Aplicaciones a la ingeniería
dc.title
Unsupervised steganalysis based on artificial training sets
dc.type
info:eu-repo/semantics/submittedVersion
dc.type
info:eu-repo/semantics/article