Distributing relational model transformation on MapReduce

dc.contributor
Université de Rennes 1
dc.contributor
Institut Mines-Télécom Atlantique Bretagne-Pays de la Loire
dc.contributor
Universitat Oberta de Catalunya (UOC)
dc.contributor.author
Benelallam, Amine
dc.contributor.author
Gómez Llana, Abel
dc.contributor.author
Tisi, Massimo
dc.contributor.author
Cabot Sagrera, Jordi
dc.date
2019-04-15T11:37:10Z
dc.date
2019-04-15T11:37:10Z
dc.date
2018-03-19
dc.identifier.citation
Benelallam, A., Gómez, A., Tisi, M. & Cabot, J. (2018). Distributing relational model transformation on MapReduce. Journal of Systems and Software, 142(), 1-20. doi: 10.1016/j.jss.2018.04.014
dc.identifier.citation
0164-1212
dc.identifier.citation
10.1016/j.jss.2018.04.014
dc.identifier.uri
http://hdl.handle.net/10609/93182
dc.description.abstract
MDE has been successfully adopted in the production of software for several domains. As the models that need to be handled in MDE grow in scale, it becomes necessary to design scalable algorithms for model transformation (MT) as well as suitable frameworks for storing and retrieving models efficiently. One way to cope with scalability is to exploit the wide availability of distributed clusters in the Cloud for the parallel execution of MT. However, because of the dense interconnectivity of models and the complexity of transformation logic, the efficient use of these solutions in distributed model processing and persistence is not trivial. This paper exploits the high level of abstraction of an existing relational MT language, ATL, and the semantics of a distributed programming model, MapReduce, to build an ATL engine with implicitly distributed execution. The syntax of the language is not modified and no primitive for distribution is added. Efficient distribution of model elements is achieved thanks to a distributed persistence layer, specifically designed for relational MT. We demonstrate the effectiveness of our approach by making an implementation of our solution publicly available and using it to experimentally measure the speed-up of the transformation system while scaling to larger models and clusters.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Journal of Systems and Software
dc.relation
Journal of Systems and Software, 2018, 142()
dc.relation
https://hal.archives-ouvertes.fr/hal-01863885/file/distributed-atl%20%288%29.pdf
dc.rights
(c) Author/s & (c) Journal
dc.rights
info:eu-repo/semantics/openAccess
dc.subject
model transformation
dc.subject
distributed computing
dc.subject
MapReduce
dc.subject
ATL
dc.subject
NeoEMF
dc.subject
MapReduce
dc.subject
ATL
dc.subject
NeoEMF
dc.subject
transformación del modelo
dc.subject
computación distribuída
dc.subject
MapReduce
dc.subject
ATL
dc.subject
NeoEMF
dc.subject
transformació de models
dc.subject
computació distribuïda
dc.subject
Computer algorithms
dc.subject
Algorismes computacionals
dc.subject
Algoritmos computacionales
dc.title
Distributing relational model transformation on MapReduce
dc.type
info:eu-repo/semantics/article
dc.type
info:eu-repo/semantics/submittedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Articles [361]